Skip to content

[mlir][sve][nfc] Merge the integration tests for linalg.matmul #74059

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 69 additions & 13 deletions mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/matmul.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,10 @@

// RUN: %{compile}

// RUN: %{run} | FileCheck %s
// RUN: %{run} | FileCheck %s --check-prefix=F32

// REDEFINE: %{entry_point} = matmul_mixed_ty
// RUN: %{run} | FileCheck %s --check-prefix=MIXED

func.func @matmul_f32() {
// Matrix dimensions
Expand All @@ -32,37 +35,75 @@ func.func @matmul_f32() {
%C_out = linalg.matmul ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>) outs(%C_in: tensor<?x?xf32>) -> tensor<?x?xf32>

// Print and verify the output
// CHECK-LABEL: SVE: START OF TEST OUTPUT
// F32-LABEL: SVE: START OF TEST OUTPUT
vector.print str "SVE: START OF TEST OUTPUT"

// CHECK-NEXT: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [5, 15] strides = [15, 1] data =
// CHECK-COUNT-5: [29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788]
// F32-NEXT: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [5, 15] strides = [15, 1] data =
// F32-COUNT-5: [29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788, 29.5788]
%xf = tensor.cast %C_out : tensor<?x?xf32> to tensor<*xf32>
call @printMemrefF32(%xf) : (tensor<*xf32>) -> ()

// CHECK-NEXT: SVE: END OF TEST OUTPUT
// F32-NEXT: SVE: END OF TEST OUTPUT
vector.print str "SVE: END OF TEST OUTPUT"

return
}

func.func @matmul_mixed_ty() {
// Matrix dimensions
%K = arith.constant 3 : index
%M = arith.constant 5 : index
%N = arith.constant 15 : index
%c0_i8 = arith.constant 0 : i8
%c0_i32 = arith.constant 0 : i32

// Allocate the matrices
%A_alloc = bufferization.alloc_tensor(%M, %K) : tensor<?x?xi8>
%B_alloc = bufferization.alloc_tensor(%K, %N) : tensor<?x?xi8>
%C_alloc = bufferization.alloc_tensor(%M, %N) : tensor<?x?xi32>

// Initialise the matrices
%pi = arith.constant 123 : i8
%A = linalg.fill ins(%pi : i8) outs(%A_alloc : tensor<?x?xi8>) -> tensor<?x?xi8>
%B = linalg.fill ins(%pi : i8) outs(%B_alloc : tensor<?x?xi8>) -> tensor<?x?xi8>
%C_in = linalg.fill ins(%c0_i32 : i32) outs(%C_alloc : tensor<?x?xi32>) -> tensor<?x?xi32>

// Matmul
%C_out = linalg.matmul ins(%A, %B: tensor<?x?xi8>, tensor<?x?xi8>) outs(%C_in: tensor<?x?xi32>) -> tensor<?x?xi32>

// Print and verify the output
// MIXED-LABEL: SVE: START OF TEST OUTPUT
vector.print str "SVE: START OF TEST OUTPUT"

// MIXED-NEXT: Unranked Memref {{.*}} rank = 2 offset = 0 sizes = [5, 15] strides = [15, 1] data =
// MIXED-COUNT-5: [45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387, 45387]
%xf = tensor.cast %C_out : tensor<?x?xi32> to tensor<*xi32>
call @printMemrefI32(%xf) : (tensor<*xi32>) -> ()

// MIXED-NEXT: SVE: END OF TEST OUTPUT
vector.print str "SVE: END OF TEST OUTPUT"

return
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
%matmul = transform.structured.match ops{["linalg.matmul"]} in %module
: (!transform.any_op) -> !transform.any_op
// A sequence that will tile and vectorise a Matmul Op
transform.named_sequence @tile_and_vectorize_matmul(%func
: !transform.op<"func.func"> {transform.readonly}) {

// Step 0: Get a handle to the matmul Op
%matmul = transform.structured.match ops{["linalg.matmul"]} in %func
: (!transform.op<"func.func">) -> !transform.any_op

// Step 1: Tile
%module_with_tiled_loops, %loops:3 = transform.structured.tile_using_for %matmul [2, [4], 1]
%tiled_matmul, %loops:3 = transform.structured.tile_using_for %matmul [2, [4], 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
transform.print %tiled_matmul {name = "matmul lal"}: !transform.any_op

// Step 2: Vectorize
%tiled_matmul = transform.structured.match ops{["linalg.matmul"]} in %module_with_tiled_loops
: (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %tiled_matmul vector_sizes [2, [4], 1] : !transform.any_op

// Step 3: Lower vector.multi_reduction to vector.contract (+ some helpful patterns)
%func = transform.structured.match ops{["func.func"]} in %module
: (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func {
transform.apply_patterns.vector.reduction_to_contract
transform.apply_patterns.vector.transfer_permutation_patterns
Expand All @@ -77,6 +118,21 @@ transform.named_sequence @__transform_main(%module: !transform.any_op {transform

transform.yield
}

// A sequence that goes over all functions in tis module and applies
// "tile_and_vectorize_matmul"
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
%funcs = transform.structured.match ops{["func.func"]} in %module
: (!transform.any_op) -> !transform.op<"func.func">

transform.foreach %funcs : !transform.op<"func.func"> {
^bb2(%func : !transform.op<"func.func">):
transform.include @tile_and_vectorize_matmul failures(propagate)
(%func) : (!transform.op<"func.func">) -> ()
}
transform.yield
}
}

func.func private @printMemrefF32(%ptr : tensor<*xf32>)
func.func private @printMemrefI32(%ptr : tensor<*xi32>)

This file was deleted.