Skip to content

[mlir][tosa] Improve lowering of tosa.conv2d #74143

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 9 additions & 37 deletions mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -344,15 +344,6 @@ class ConvConverter : public OpConversionPattern<TosaConvOp> {
weightPermValue);
}

auto resultZeroAttr = rewriter.getZeroAttr(resultETy);
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
loc, resultTy.getShape(), resultETy, filteredDims);
Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr);
Value zeroTensor = rewriter
.create<linalg::FillOp>(loc, ValueRange{zero},
ValueRange{emptyTensor})
.result();

// Extract the attributes for convolution.
ArrayRef<int64_t> stride = strideTosaAttr;
ArrayRef<int64_t> dilation = dilationTosaAttr;
Expand All @@ -361,57 +352,38 @@ class ConvConverter : public OpConversionPattern<TosaConvOp> {
auto strideAttr = rewriter.getI64TensorAttr(stride);
auto dilationAttr = rewriter.getI64TensorAttr(dilation);

// Create maps for the bias broadcasting
SmallVector<AffineMap, 4> indexingMaps;
indexingMaps.push_back(AffineMap::get(
/*dimCount=*/resultTy.getRank(), /*symbolCount=*/0,
{rewriter.getAffineDimExpr(resultTy.getRank() - 1)},
rewriter.getContext()));
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank()));
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank()));

Value biasEmptyTensor = rewriter.create<tensor::EmptyOp>(
loc, resultTy.getShape(), resultETy, filteredDims);

Value broadcastBias =
linalgBroadcastAndMaybeExtSI(rewriter, loc, bias, biasEmptyTensor);

if (isQuantized) {
auto quantizationInfo = *op.getQuantizationInfo();
auto iZp = rewriter.getI32IntegerAttr(quantizationInfo.getInputZp());
auto kZp = rewriter.getI32IntegerAttr(quantizationInfo.getWeightZp());

auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp);
auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp);

Value conv =
rewriter
.create<LinalgConvQOp>(
loc, resultTy, ValueRange{input, weight, iZpVal, kZpVal},
ValueRange{zeroTensor}, strideAttr, dilationAttr)
ValueRange{broadcastBias}, strideAttr, dilationAttr)
->getResult(0);
Value result = linalgIntBroadcastExtSIAdd(rewriter, loc, bias, conv,
biasEmptyTensor, indexingMaps);
rewriter.replaceOp(op, result);

rewriter.replaceOp(op, conv);
return success();
}

Value conv = rewriter
.create<LinalgConvOp>(
loc, resultTy, ValueRange{input, weight},
ValueRange{zeroTensor}, strideAttr, dilationAttr)
ValueRange{broadcastBias}, strideAttr, dilationAttr)
->getResult(0);

Value result =
rewriter
.create<linalg::GenericOp>(
loc, resultTy, ValueRange({bias, conv}), biasEmptyTensor,
indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()),
[&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange args) {
Value added = nestedBuilder.create<arith::AddFOp>(
loc, args[0], args[1]);
nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
})
.getResult(0);

rewriter.replaceOp(op, result);
rewriter.replaceOp(op, conv);
return success();
}
};
Expand Down
125 changes: 59 additions & 66 deletions mlir/test/Conversion/TosaToLinalg/tosa-to-linalg-named.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -378,16 +378,14 @@ func.func @avg_pool_dyn(%arg0: tensor<?x6x34x62xf32>) -> (tensor<?x5x33x62xf32>)
func.func @conv2d_i8(%input: tensor<1x49x42x27xi8>, %weights: tensor<28x1x1x27xi8>, %bias: tensor<28xi8>) -> () {
// HWCF: %[[TRANSPOSE_DIMS:.+]] = arith.constant dense<[1, 2, 3, 0]> : tensor<4xi64>
// HWCF: %[[TRANSPOSE:.+]] = tosa.transpose %arg1, %[[TRANSPOSE_DIMS]] : (tensor<28x1x1x27xi8>, tensor<4xi64>) -> tensor<1x1x27x28xi8>
// CHECK: %[[M_IN:.+]] = tensor.empty()
// CHECK: %[[CST:.+]] = arith.constant 0
// CHECK: %[[FILL:.+]] = linalg.fill
// CHECK: %[[B_IN:.+]] = tensor.empty()
// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_fhwc_q {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, %c0_i32_0, %c0_i32_1 : tensor<1x49x42x27xi8>, tensor<28x1x1x27xi8>, i32, i32) outs(%[[FILL]] : tensor<1x45x40x28xi32>) -> tensor<1x45x40x28xi32>
// HWCF: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf_q {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %[[TRANSPOSE]], %c0_i32_0, %c0_i32_1 : tensor<1x49x42x27xi8>, tensor<1x1x27x28xi8>, i32, i32) outs(%{{[a-zA-Z0-9_]*}} : tensor<1x45x40x28xi32>) -> tensor<1x45x40x28xi32>
// CHECK: %[[B:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, %[[CONV]] : tensor<28xi8>, tensor<1x45x40x28xi32>) outs(%[[B_IN]] : tensor<1x45x40x28xi32>)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x45x40x28xi32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<28xi8>) outs(%[[INIT]] : tensor<1x45x40x28xi32>) {
// CHECK: arith.extsi
// CHECK: arith.addi
// CHECK: linalg.yield
// CHECK: } -> tensor<1x45x40x28xi32>
// CHECK: linalg.conv_2d_nhwc_fhwc_q {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, %c0_i32, %c0_i32_0 : tensor<1x49x42x27xi8>, tensor<28x1x1x27xi8>, i32, i32) outs(%[[BROADCAST]] : tensor<1x45x40x28xi32>) -> tensor<1x45x40x28xi32>
// HWCF: linalg.conv_2d_nhwc_hwcf_q {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %[[TRANSPOSE]], %c0_i32, %c0_i32_0 : tensor<1x49x42x27xi8>, tensor<1x1x27x28xi8>, i32, i32) outs(%{{[a-zA-Z0-9_]*}} : tensor<1x45x40x28xi32>) -> tensor<1x45x40x28xi32>

%0 = tosa.conv2d %input, %weights, %bias {dilation = array<i64: 2, 1>, pad = array<i64: 0, 0, 0, 0>, quantization_info = #tosa.conv_quant<input_zp = 0, weight_zp = 0>, stride = array<i64: 1, 1>} : (tensor<1x49x42x27xi8>, tensor<28x1x1x27xi8>, tensor<28xi8>) -> tensor<1x45x40x28xi32>
return
}
Expand All @@ -401,15 +399,14 @@ func.func @conv2d_i8(%input: tensor<1x49x42x27xi8>, %weights: tensor<28x1x1x27xi
func.func @conv2d_f32(%input: tensor<1x49x42x27xf32>, %weights: tensor<28x3x3x27xf32>, %bias: tensor<28xf32>) -> () {
// HWCF: %[[TRANSPOSE_DIMS:.+]] = arith.constant dense<[1, 2, 3, 0]> : tensor<4xi64>
// HWCF: %[[TRANSPOSE:.+]] = tosa.transpose %arg1, %[[TRANSPOSE_DIMS]] : (tensor<28x3x3x27xf32>, tensor<4xi64>) -> tensor<3x3x27x28xf32>
// CHECK: %[[M_IN:.+]] = tensor.empty()
// CHECK: %[[CST:.+]] = arith.constant 0
// CHECK: %[[FILL:.+]] = linalg.fill
// CHECK: %[[B_IN:.+]] = tensor.empty()
// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_fhwc {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x49x42x27xf32>, tensor<28x3x3x27xf32>) outs(%[[FILL]] : tensor<1x45x40x28xf32>)
// HWCF: %[[CONV:.+]] = linalg.conv_2d_nhwc_hwcf {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %[[TRANSPOSE]] : tensor<1x49x42x27xf32>, tensor<3x3x27x28xf32>) outs(%{{[a-zA-Z0-9_]*}} : tensor<1x45x40x28xf32>
// CHECK: %[[B:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, %[[CONV]] : tensor<28xf32>, tensor<1x45x40x28xf32>) outs(%[[B_IN]] : tensor<1x45x40x28xf32>)
// CHECK: arith.addf

// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x45x40x28xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<28xf32>) outs(%[[INIT]] : tensor<1x45x40x28xf32>) {
// CHECK: linalg.yield
// CHECK: } -> tensor<1x45x40x28xf32>
// CHECK: linalg.conv_2d_nhwc_fhwc {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x49x42x27xf32>, tensor<28x3x3x27xf32>) outs(%1 : tensor<1x45x40x28xf32>) -> tensor<1x45x40x28xf32>

// HWCF: linalg.conv_2d_nhwc_hwcf {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %[[TRANSPOSE]] : tensor<1x49x42x27xf32>, tensor<3x3x27x28xf32>) outs(%{{[a-zA-Z0-9_]*}} : tensor<1x45x40x28xf32>
%0 = tosa.conv2d %input, %weights, %bias {pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 2, 1>} : (tensor<1x49x42x27xf32>, tensor<28x3x3x27xf32>, tensor<28xf32>) -> tensor<1x45x40x28xf32>
return
}
Expand All @@ -421,16 +418,14 @@ func.func @conv2d_f32(%input: tensor<1x49x42x27xf32>, %weights: tensor<28x3x3x27

// CHECK-LABEL: @conv2d_dyn
func.func @conv2d_dyn(%input: tensor<?x49x42x27xf32>, %weights: tensor<28x3x3x27xf32>, %bias: tensor<28xf32>) -> () {
// CHECK: %[[C0:.+]] = arith.constant 0
// CHECK: %[[BATCH:.+]] = tensor.dim %arg0, %[[C0]]
// CHECK: %[[M_IN:.+]] = tensor.empty(%[[BATCH]])
// CHECK: %[[CST:.+]] = arith.constant 0
// CHECK: %[[FILL:.+]] = linalg.fill
// CHECK: %[[B_IN:.+]] = tensor.empty(%[[BATCH]])
// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_fhwc {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<?x49x42x27xf32>, tensor<28x3x3x27xf32>) outs(%[[FILL]] : tensor<?x45x40x28xf32>)
// CHECK: %[[B:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, %[[CONV]] : tensor<28xf32>, tensor<?x45x40x28xf32>) outs(%[[B_IN]] : tensor<?x45x40x28xf32>)
// CHECK: %[[ADD:.+]] = arith.addf
// CHECK: linalg.yield %[[ADD]] : f32
// CHECK: %[[C0:.+]] = arith.constant 0 : index
// CHECK: %[[BATCH:.+]] = tensor.dim %arg0, %[[C0]] : tensor<?x49x42x27xf32>
// CHECK: %[[INIT:.+]] = tensor.empty(%[[BATCH]]) : tensor<?x45x40x28xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<28xf32>) outs(%[[INIT]] : tensor<?x45x40x28xf32>) {
// CHECK: ^bb0(%[[IN:.+]]: f32, %{{.+}}: f32):
// CHECK: linalg.yield %[[IN]] : f32
// CHECK: } -> tensor<?x45x40x28xf32>
// CHECK: %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<?x49x42x27xf32>, tensor<28x3x3x27xf32>) outs(%[[BROADCAST]] : tensor<?x45x40x28xf32>) -> tensor<?x45x40x28xf32>
%0 = tosa.conv2d %input, %weights, %bias {pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 2, 1>} : (tensor<?x49x42x27xf32>, tensor<28x3x3x27xf32>, tensor<28xf32>) -> tensor<?x45x40x28xf32>
return
}
Expand Down Expand Up @@ -481,14 +476,12 @@ func.func @conv2d_dyn_w_h(%input: tensor<1x?x?x27xf32>, %weights: tensor<28x3x3x
// CHECK: %[[W_OUT:.+]] = arith.addi %[[DIVIDED_0]], %[[ONE_0]] : index

// Running convolution
// CHECK: %[[M_IN:.+]] = tensor.empty(%[[H_OUT]], %[[W_OUT]])
// CHECK: %[[CST:.+]] = arith.constant 0
// CHECK: %[[FILL:.+]] = linalg.fill
// CHECK: %[[B_IN:.+]] = tensor.empty(%[[H_OUT]], %[[W_OUT]])
// CHECK: %[[CONV:.+]] = linalg.conv_2d_nhwc_fhwc {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x?x?x27xf32>, tensor<28x3x3x27xf32>) outs(%[[FILL]] : tensor<1x?x?x28xf32>)
// CHECK: %[[B:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, %[[CONV]] : tensor<28xf32>, tensor<1x?x?x28xf32>) outs(%[[B_IN]] : tensor<1x?x?x28xf32>)
// CHECK: %[[ADD:.+]] = arith.addf
// CHECK: linalg.yield %[[ADD]] : f32
// CHECK: %[[INIT:.+]] = tensor.empty(%[[H_OUT]], %[[W_OUT]]) : tensor<1x?x?x28xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<28xf32>) outs(%[[INIT]] : tensor<1x?x?x28xf32>) {
// CHECK: linalg.yield
// CHECK: } -> tensor<1x?x?x28xf32>
// CHECK: linalg.conv_2d_nhwc_fhwc {dilations = dense<[2, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x?x?x27xf32>, tensor<28x3x3x27xf32>) outs(%17 : tensor<1x?x?x28xf32>) -> tensor<1x?x?x28xf32>

%0 = tosa.conv2d %input, %weights, %bias {pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 2, 1>} : (tensor<1x?x?x27xf32>, tensor<28x3x3x27xf32>, tensor<28xf32>) -> tensor<1x?x?x28xf32>
return
}
Expand Down Expand Up @@ -678,52 +671,52 @@ func.func @depthwise_conv2d_dyn_w_h(%arg0: tensor<2x?x?x3xf32>, %arg1: tensor<3x

// -----

// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d4)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>

// CHECK-LABEL: @conv3d_f32
func.func @conv3d_f32(%input: tensor<1x49x48x47x27xf32>, %weights: tensor<28x3x4x5x27xf32>, %bias: tensor<28xf32>) -> () {
// CHECK-DAG: %[[PERMS:.+]] = arith.constant dense<[1, 2, 3, 4, 0]>
// CHECK-DAG: %[[TRANSPOSE:.+]] = tosa.transpose %arg1, %[[PERMS]]
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty()
// CHECK-DAG: %[[ZERO:.+]] = arith.constant 0
// CHECK-DAG: %[[FILL:.+]] = linalg.fill ins(%[[ZERO]] : f32) outs(%[[EMPTY]] : tensor<1x47x45x43x28xf32>)
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty()
// CHECK-DAG: %[[CONV3D:.+]] = linalg.conv_3d_ndhwc_dhwcf
// CHECK-DAG: %[[PERMS:.+]] = arith.constant dense<[1, 2, 3, 4, 0]>
// CHECK-DAG: %[[TRANSPOSE:.+]] = tosa.transpose %arg1, %[[PERMS]]
// CHECK-DAG: %[[INIT:.+]] = tensor.empty() : tensor<1x47x45x43x28xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic
// CHECK-SAME: {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]}
// CHECK-SAME: ins(%arg2 : tensor<28xf32>) outs(%1 : tensor<1x47x45x43x28xf32>) {
// CHECK: ^bb0(%[[IN:.+]]: f32, %[[OUT:.+]]: f32):
// CHECK: linalg.yield %[[IN]] : f32
// CHECK: } -> tensor<1x47x45x43x28xf32>
// CHECK: linalg.conv_3d_ndhwc_dhwcf
// CHECK-SAME: {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>}
// CHECK-SAME: ins(%arg0, %[[TRANSPOSE]] : tensor<1x49x48x47x27xf32>, tensor<3x4x5x27x28xf32>)
// CHECK-SAME: outs(%[[FILL]] : tensor<1x47x45x43x28xf32>) -> tensor<1x47x45x43x28xf32>
// CHECK: %[[GENERIC:.+]] = linalg.generic
// CHECK-SAME: {indexing_maps = [#map, #map1, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]}
// CHECK-SAME: ins(%arg2, %[[CONV3D]] : tensor<28xf32>, tensor<1x47x45x43x28xf32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<1x47x45x43x28xf32>) {
// CHECK: ^bb0(%[[A1:.+]]: f32, %[[A2:.+]]: f32, %{{.+}}: f32):
// CHECK: %[[ADD:.+]] = arith.addf %[[A1]], %[[A2]] : f32
// CHECK: linalg.yield %[[ADD]]
// CHECK-SAME: outs(%[[BROADCAST]] : tensor<1x47x45x43x28xf32>) -> tensor<1x47x45x43x28xf32>
%0 = tosa.conv3d %input, %weights, %bias {pad = array<i64: 0, 0, 0, 0, 0, 0>, stride = array<i64: 1, 1, 1>, dilation = array<i64: 1, 1, 1>} : (tensor<1x49x48x47x27xf32>, tensor<28x3x4x5x27xf32>, tensor<28xf32>) -> tensor<1x47x45x43x28xf32>
return
}

// -----

// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d4)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>

// CHECK-LABEL: @conv3d_i8
func.func @conv3d_i8(%input: tensor<1x49x48x47x27xi8>, %weights: tensor<28x3x4x5x27xi8>, %bias: tensor<28xi32>) -> () {
// CHECK-DAG: %[[PERMS:.+]] = arith.constant dense<[1, 2, 3, 4, 0]>
// CHECK-DAG: %[[TRANSPOSE:.+]] = tosa.transpose %arg1, %[[PERMS]]
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty()
// CHECK-DAG: %[[ZERO:.+]] = arith.constant 0
// CHECK-DAG: %[[FILL:.+]] = linalg.fill ins(%[[ZERO]] : i32) outs(%[[EMPTY]] : tensor<1x47x45x43x28xi32>)
// CHECK-DAG: %[[EMPTY:.+]] = tensor.empty()
// CHECK-DAG: %[[IZP:.+]] = arith.constant -128 : i32
// CHECK-DAG: %[[FZP:.+]] = arith.constant 42 : i32
// CHECK-DAG: %[[CONV3D:.+]] = linalg.conv_3d_ndhwc_dhwcf_q
// CHECK-DAG: %[[PERMS:.+]] = arith.constant dense<[1, 2, 3, 4, 0]>
// CHECK-DAG: %[[TRANSPOSE:.+]] = tosa.transpose %arg1, %[[PERMS]]
// CHECK-DAG: %[[INIT:.+]] = tensor.empty() : tensor<1x47x45x43x28xi32>
// CHECK: %[[BROADCAST:.+]] = linalg.generic
// CHECK-SAME: {indexing_maps = [#[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]}
// CHECK-SAME: ins(%arg2 : tensor<28xi32>)
// CHECK-SAME: outs(%[[INIT]] : tensor<1x47x45x43x28xi32>) {
// CHECK: ^bb0(%[[IN:.+]]: i32, %[[OUT:.+]]: i32):
// CHECK: linalg.yield %[[IN]] : i32
// CHECK: } -> tensor<1x47x45x43x28xi32>
// CHECK: %[[IZP:.+]] = arith.constant -128 : i32
// CHECK: %[[FZP:.+]] = arith.constant 42 : i32
// CHECK: linalg.conv_3d_ndhwc_dhwcf_q
// CHECK-SAME: {dilations = dense<1> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>}
// CHECK-SAME: ins(%arg0, %[[TRANSPOSE]], %[[IZP]], %[[FZP]] : tensor<1x49x48x47x27xi8>, tensor<3x4x5x27x28xi8>, i32, i32)
// CHECK-SAME: outs(%[[FILL]] : tensor<1x47x45x43x28xi32>) -> tensor<1x47x45x43x28xi32>
// CHECK: %[[GENERIC:.+]] = linalg.generic
// CHECK-SAME: {indexing_maps = [#map, #map1, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]}
// CHECK-SAME: ins(%arg2, %[[CONV3D]] : tensor<28xi32>, tensor<1x47x45x43x28xi32>)
// CHECK-SAME: outs(%[[EMPTY]] : tensor<1x47x45x43x28xi32>) {
// CHECK: ^bb0(%[[A1:.+]]: i32, %[[A2:.+]]: i32, %{{.+}}: i32):
// CHECK: %[[ADD:.+]] = arith.addi %[[A1]], %[[A2]] : i32
// CHECK: linalg.yield %[[ADD]]
// CHECK-SAME: outs(%[[BROADCAST]] : tensor<1x47x45x43x28xi32>) -> tensor<1x47x45x43x28xi32>

%0 = tosa.conv3d %input, %weights, %bias {pad = array<i64: 0, 0, 0, 0, 0, 0>, quantization_info = #tosa.conv_quant<input_zp = -128, weight_zp = 42>, stride = array<i64: 1, 1, 1>, dilation = array<i64: 1, 1, 1>} : (tensor<1x49x48x47x27xi8>, tensor<28x3x4x5x27xi8>, tensor<28xi32>) -> tensor<1x47x45x43x28xi32>
return
}