Skip to content

[mlir][tensor] Fold consumer linalg transpose with producer tensor pack #74206

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 17 commits into from
Dec 13, 2023
Merged
Show file tree
Hide file tree
Changes from 11 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
Expand Down Expand Up @@ -81,10 +82,91 @@ struct FoldUnpackWithExtractSliceOp : public OpRewritePattern<ExtractSliceOp> {
return success();
}
};

/// Fold 'pack' -> 'transpose' into 'pack' since 'pack' already has transpose
/// semantics.
struct FoldProducerPackWithConsumerLinalgTransposeOp
: public OpRewritePattern<linalg::TransposeOp> {
using OpRewritePattern<linalg::TransposeOp>::OpRewritePattern;

LogicalResult matchAndRewrite(linalg::TransposeOp transposeOp,
PatternRewriter &rewriter) const override {
auto transposeInputTensor = transposeOp.getOperand(0);
auto packOp = transposeInputTensor.getDefiningOp<PackOp>();

if (!packOp)
return failure();

auto packInnerDimsPos = packOp.getInnerDimsPos();
auto packInnerTiles = packOp.getStaticInnerTiles();
auto packOuterDimsPerm = packOp.getOuterDimsPerm();
auto transposePerm = transposeOp.getPermutation();
SmallVector<int64_t> newPackOuterDimsPermVec;
SmallVector<int64_t> newPackInnerDimsPosVec;
SmallVector<int64_t> newPackInnerTilesVec;

// Variable for storing translated position after considering original
// outer_dims_perm and permutation attributes of tensor.pack and
// linalg.transpose.
int64_t translatedPosition;

// Process transpose operation for non-tiled outer dimensions of the tensor.
for (unsigned int i = 0; i < transposePerm.size() - packInnerTiles.size();
++i) {
// If tensor.pack has outer_dims_perm attribute, then consider it during
// index translation.
if (packOuterDimsPerm.size()) {
// Note: static_cast is added around transposePerm[i] to suppress the
// compiler warning of comparison between variables of different types.
if (static_cast<unsigned long>(transposePerm[i]) <
packOuterDimsPerm.size())
translatedPosition = packOuterDimsPerm[transposePerm[i]];
else
return rewriter.notifyMatchFailure(
transposeOp,
"Cannot fold in tensor.pack if a tile dimension was transposed "
"with a non-tile dimension in linalg.transpose.");
} else
translatedPosition = transposePerm[i];

newPackOuterDimsPermVec.push_back(translatedPosition);
}

// Process transpose operation for tiled inner dimensions of the tensor.
for (unsigned int i = transposePerm.size() - packInnerTiles.size();
i < transposePerm.size(); ++i) {
translatedPosition =
transposePerm[i] - (transposePerm.size() - packInnerTiles.size());

newPackInnerTilesVec.push_back(packInnerTiles[translatedPosition]);
newPackInnerDimsPosVec.push_back(packInnerDimsPos[translatedPosition]);
}

SmallVector<OpFoldResult> opFoldResultsTiles;
opFoldResultsTiles.reserve(newPackInnerTilesVec.size());

transform(newPackInnerTilesVec, std::back_inserter(opFoldResultsTiles),
[&rewriter](int64_t value) {
return IntegerAttr::get(IndexType::get(rewriter.getContext()),
value);
});

Value output = packOp.createDestinationTensor(
rewriter, transposeOp.getLoc(), packOp.getSource(), opFoldResultsTiles,
newPackInnerDimsPosVec, newPackOuterDimsPermVec);

rewriter.replaceOpWithNewOp<PackOp>(
transposeOp, packOp.getSource(), output, newPackInnerDimsPosVec,
opFoldResultsTiles, packOp.getPaddingValue(), newPackOuterDimsPermVec);

return success();
}
};
} // namespace

void populateFoldIntoPackAndUnpackPatterns(RewritePatternSet &patterns) {
patterns.insert<FoldUnpackWithExtractSliceOp, FoldPadWithPackOp>(
patterns.insert<FoldUnpackWithExtractSliceOp, FoldPadWithPackOp,
FoldProducerPackWithConsumerLinalgTransposeOp>(
patterns.getContext());
}

Expand Down
99 changes: 99 additions & 0 deletions mlir/test/Dialect/Tensor/fold-into-pack-and-unpack.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -114,3 +114,102 @@ func.func @pad_pack_different_padding_value(%src: tensor<16641x16xf32>) -> tenso
// CHECK-LABEL: func.func @pad_pack_different_padding_value
// CHECK: tensor.pad
// CHECK: tensor.pack

// -----

func.func @tensor_pack_linalg_transpose_fold(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x57x56x2x32xf32> {
%0 = tensor.empty() : tensor<56x2x1x57x32xf32>
%pack = tensor.pack %arg0
outer_dims_perm = [0, 3, 2, 1]
inner_dims_pos = [3]
inner_tiles = [32]
into %0 : tensor<56x57x1x64xf32> -> tensor<56x2x1x57x32xf32>

%1 = tensor.empty() : tensor<1x57x56x2x32xf32>
%transposed = linalg.transpose
ins(%pack : tensor<56x2x1x57x32xf32>)
outs(%1 : tensor<1x57x56x2x32xf32>)
permutation = [2, 3, 0, 1, 4]
return %transposed : tensor<1x57x56x2x32xf32>
}
// CHECK: func @tensor_pack_linalg_transpose_fold(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x64xf32>)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x57x56x2x32xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [2, 1, 0, 3]
// CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]

// -----

func.func @tensor_pack_linalg_transpose_fold_no_outer_dims_perm(%arg0: tensor<56x57x1x64xf32>) -> tensor<1x2x56x57x32xf32> {
%0 = tensor.empty() : tensor<56x57x1x2x32xf32>
%pack = tensor.pack %arg0
inner_dims_pos = [3]
inner_tiles = [32]
into %0 : tensor<56x57x1x64xf32> -> tensor<56x57x1x2x32xf32>

%1 = tensor.empty() : tensor<1x2x56x57x32xf32>
%transposed = linalg.transpose
ins(%pack : tensor<56x57x1x2x32xf32>)
outs(%1 : tensor<1x2x56x57x32xf32>)
permutation = [2, 3, 0, 1, 4]
return %transposed : tensor<1x2x56x57x32xf32>
}
// CHECK: func @tensor_pack_linalg_transpose_fold_no_outer_dims_perm(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x57x1x64xf32>)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1x2x56x57x32xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [2, 3, 0, 1]
// CHECK-SAME: inner_dims_pos = [3] inner_tiles = [32]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]

// -----

func.func @tensor_pack_linalg_transpose_fold_tile_dims_transpose(%arg0: tensor<56x64x4x64xf32>) -> tensor<2x2x56x2x32x32x2xf32> {
%0 = tensor.empty() : tensor<56x2x2x2x32x2x32xf32>
%pack = tensor.pack %arg0
outer_dims_perm = [0, 1, 2, 3]
inner_dims_pos = [1, 2, 3]
inner_tiles = [32, 2, 32]
into %0 : tensor<56x64x4x64xf32> -> tensor<56x2x2x2x32x2x32xf32>

%1 = tensor.empty() : tensor<2x2x56x2x32x32x2xf32>
%transposed = linalg.transpose
ins(%pack : tensor<56x2x2x2x32x2x32xf32>)
outs(%1 : tensor<2x2x56x2x32x32x2xf32>)
permutation = [2, 3, 0, 1, 6, 4, 5]
return %transposed : tensor<2x2x56x2x32x32x2xf32>
}
// CHECK: func @tensor_pack_linalg_transpose_fold_tile_dims_transpose(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x64x4x64xf32>)
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<2x2x56x2x32x32x2xf32>
// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]]
// CHECK-SAME: outer_dims_perm = [2, 3, 0, 1]
// CHECK-SAME: inner_dims_pos = [3, 1, 2] inner_tiles = [32, 32, 2]
// CHECK-SAME: into %[[INIT]]
// CHECK: return %[[PACK]]

// -----

func.func @tensor_pack_linalg_transpose_fold_tile_dims_outer_dims_transpose(%arg0: tensor<56x64x4x64xf32>) -> tensor<2x2x2x2x32x32x56xf32> {
%0 = tensor.empty() : tensor<56x2x2x2x32x2x32xf32>
%pack = tensor.pack %arg0
outer_dims_perm = [0, 1, 2, 3]
inner_dims_pos = [1, 2, 3]
inner_tiles = [32, 2, 32]
into %0 : tensor<56x64x4x64xf32> -> tensor<56x2x2x2x32x2x32xf32>

%1 = tensor.empty() : tensor<2x2x2x2x32x32x56xf32>
%transposed = linalg.transpose
ins(%pack : tensor<56x2x2x2x32x2x32xf32>)
outs(%1 : tensor<2x2x2x2x32x32x56xf32>)
permutation = [2, 3, 5, 1, 6, 4, 0]
return %transposed : tensor<2x2x2x2x32x32x56xf32>
}
// CHECK: func @tensor_pack_linalg_transpose_fold_tile_dims_outer_dims_transpose(
// CHECK-SAME: %[[ARG0:.+]]: tensor<56x64x4x64xf32>)
// CHECK: tensor.pack
// CHECK: linalg.transpose