Skip to content

Revert "[libc][NFC] Implement FPBits in terms of FloatProperties to reduce clutter" #75304

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 34 additions & 34 deletions libc/src/__support/FPUtil/FPBits.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,74 +36,71 @@ template <typename T> struct ExponentWidth {
// floating numbers. On x86 platforms however, the 'long double' type maps to
// an x87 floating point format. This format is an IEEE 754 extension format.
// It is handled as an explicit specialization of this class.
template <typename T> struct FPBits : private FloatProperties<T> {
template <typename T> struct FPBits {
static_assert(cpp::is_floating_point_v<T>,
"FPBits instantiated with invalid type.");
using typename FloatProperties<T>::UIntType;
using FloatProperties<T>::BIT_WIDTH;
using FloatProperties<T>::EXP_MANT_MASK;
using FloatProperties<T>::EXPONENT_MASK;
using FloatProperties<T>::EXPONENT_BIAS;
using FloatProperties<T>::EXPONENT_WIDTH;
using FloatProperties<T>::MANTISSA_MASK;
using FloatProperties<T>::MANTISSA_WIDTH;
using FloatProperties<T>::QUIET_NAN_MASK;
using FloatProperties<T>::SIGN_MASK;

// Reinterpreting bits as an integer value and interpreting the bits of an
// integer value as a floating point value is used in tests. So, a convenient
// type is provided for such reinterpretations.
using FloatProp = FloatProperties<T>;
using UIntType = typename FloatProp::UIntType;

UIntType bits;

LIBC_INLINE constexpr void set_mantissa(UIntType mantVal) {
mantVal &= MANTISSA_MASK;
bits &= ~MANTISSA_MASK;
mantVal &= (FloatProp::MANTISSA_MASK);
bits &= ~(FloatProp::MANTISSA_MASK);
bits |= mantVal;
}

LIBC_INLINE constexpr UIntType get_mantissa() const {
return bits & MANTISSA_MASK;
return bits & FloatProp::MANTISSA_MASK;
}

LIBC_INLINE constexpr void set_biased_exponent(UIntType expVal) {
expVal = (expVal << MANTISSA_WIDTH) & EXPONENT_MASK;
bits &= ~EXPONENT_MASK;
expVal = (expVal << (FloatProp::MANTISSA_WIDTH)) & FloatProp::EXPONENT_MASK;
bits &= ~(FloatProp::EXPONENT_MASK);
bits |= expVal;
}

LIBC_INLINE constexpr uint16_t get_biased_exponent() const {
return uint16_t((bits & EXPONENT_MASK) >> MANTISSA_WIDTH);
return uint16_t((bits & FloatProp::EXPONENT_MASK) >>
(FloatProp::MANTISSA_WIDTH));
}

// The function return mantissa with the implicit bit set iff the current
// value is a valid normal number.
LIBC_INLINE constexpr UIntType get_explicit_mantissa() {
return ((get_biased_exponent() > 0 && !is_inf_or_nan())
? (MANTISSA_MASK + 1)
? (FloatProp::MANTISSA_MASK + 1)
: 0) |
(MANTISSA_MASK & bits);
(FloatProp::MANTISSA_MASK & bits);
}

LIBC_INLINE constexpr void set_sign(bool signVal) {
bits |= SIGN_MASK;
bits |= FloatProp::SIGN_MASK;
if (!signVal)
bits -= SIGN_MASK;
bits -= FloatProp::SIGN_MASK;
}

LIBC_INLINE constexpr bool get_sign() const {
return (bits & SIGN_MASK) != 0;
return (bits & FloatProp::SIGN_MASK) != 0;
}

static_assert(sizeof(T) == sizeof(UIntType),
"Data type and integral representation have different sizes.");

static constexpr int MAX_EXPONENT = (1 << EXPONENT_WIDTH) - 1;
static constexpr int EXPONENT_BIAS = (1 << (ExponentWidth<T>::VALUE - 1)) - 1;
static constexpr int MAX_EXPONENT = (1 << ExponentWidth<T>::VALUE) - 1;

static constexpr UIntType MIN_SUBNORMAL = UIntType(1);
static constexpr UIntType MAX_SUBNORMAL = (UIntType(1) << MANTISSA_WIDTH) - 1;
static constexpr UIntType MIN_NORMAL = (UIntType(1) << MANTISSA_WIDTH);
static constexpr UIntType MAX_SUBNORMAL =
(UIntType(1) << MantissaWidth<T>::VALUE) - 1;
static constexpr UIntType MIN_NORMAL =
(UIntType(1) << MantissaWidth<T>::VALUE);
static constexpr UIntType MAX_NORMAL =
((UIntType(MAX_EXPONENT) - 1) << MANTISSA_WIDTH) | MAX_SUBNORMAL;
((UIntType(MAX_EXPONENT) - 1) << MantissaWidth<T>::VALUE) | MAX_SUBNORMAL;

// We don't want accidental type promotions/conversions, so we require exact
// type match.
Expand Down Expand Up @@ -154,29 +151,32 @@ template <typename T> struct FPBits : private FloatProperties<T> {
}

LIBC_INLINE constexpr bool is_inf() const {
return (bits & EXP_MANT_MASK) == EXPONENT_MASK;
return (bits & FloatProp::EXP_MANT_MASK) == FloatProp::EXPONENT_MASK;
}

LIBC_INLINE constexpr bool is_nan() const {
return (bits & EXP_MANT_MASK) > EXPONENT_MASK;
return (bits & FloatProp::EXP_MANT_MASK) > FloatProp::EXPONENT_MASK;
}

LIBC_INLINE constexpr bool is_quiet_nan() const {
return (bits & EXP_MANT_MASK) == (EXPONENT_MASK | QUIET_NAN_MASK);
return (bits & FloatProp::EXP_MANT_MASK) ==
(FloatProp::EXPONENT_MASK | FloatProp::QUIET_NAN_MASK);
}

LIBC_INLINE constexpr bool is_inf_or_nan() const {
return (bits & EXPONENT_MASK) == EXPONENT_MASK;
return (bits & FloatProp::EXPONENT_MASK) == FloatProp::EXPONENT_MASK;
}

LIBC_INLINE static constexpr T zero(bool sign = false) {
return FPBits(sign ? SIGN_MASK : UIntType(0)).get_val();
return FPBits(sign ? FloatProp::SIGN_MASK : UIntType(0)).get_val();
}

LIBC_INLINE static constexpr T neg_zero() { return zero(true); }

LIBC_INLINE static constexpr T inf(bool sign = false) {
return FPBits((sign ? SIGN_MASK : UIntType(0)) | EXPONENT_MASK).get_val();
return FPBits((sign ? FloatProp::SIGN_MASK : UIntType(0)) |
FloatProp::EXPONENT_MASK)
.get_val();
}

LIBC_INLINE static constexpr T neg_inf() { return inf(true); }
Expand Down Expand Up @@ -204,7 +204,7 @@ template <typename T> struct FPBits : private FloatProperties<T> {
}

LIBC_INLINE static constexpr T build_quiet_nan(UIntType v) {
return build_nan(QUIET_NAN_MASK | v);
return build_nan(FloatProp::QUIET_NAN_MASK | v);
}

// The function convert integer number and unbiased exponent to proper float
Expand All @@ -220,7 +220,7 @@ template <typename T> struct FPBits : private FloatProperties<T> {
LIBC_INLINE static constexpr FPBits<T> make_value(UIntType number, int ep) {
FPBits<T> result;
// offset: +1 for sign, but -1 for implicit first bit
int lz = cpp::countl_zero(number) - EXPONENT_WIDTH;
int lz = cpp::countl_zero(number) - FloatProp::EXPONENT_WIDTH;
number <<= lz;
ep -= lz;

Expand Down
20 changes: 10 additions & 10 deletions libc/src/__support/FPUtil/Hypot.h
Original file line number Diff line number Diff line change
Expand Up @@ -104,14 +104,14 @@ template <> struct DoubleLength<uint64_t> {
//
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T hypot(T x, T y) {
using FPBits = FPBits<T>;
using UIntType = typename FPBits::UIntType;
using FPBits_t = FPBits<T>;
using UIntType = typename FPBits<T>::UIntType;
using DUIntType = typename DoubleLength<UIntType>::Type;

FPBits x_bits(x), y_bits(y);
FPBits_t x_bits(x), y_bits(y);

if (x_bits.is_inf() || y_bits.is_inf()) {
return T(FPBits::inf());
return T(FPBits_t::inf());
}
if (x_bits.is_nan()) {
return x;
Expand Down Expand Up @@ -193,11 +193,11 @@ LIBC_INLINE T hypot(T x, T y) {
sticky_bits = sticky_bits || ((sum & 0x3U) != 0);
sum >>= 2;
++out_exp;
if (out_exp >= FPBits::MAX_EXPONENT) {
if (out_exp >= FPBits_t::MAX_EXPONENT) {
if (int round_mode = quick_get_round();
round_mode == FE_TONEAREST || round_mode == FE_UPWARD)
return T(FPBits::inf());
return T(FPBits(FPBits::MAX_NORMAL));
return T(FPBits_t::inf());
return T(FPBits_t(FPBits_t::MAX_NORMAL));
}
} else {
// For denormal result, we simply move the leading bit of the result to
Expand Down Expand Up @@ -251,10 +251,10 @@ LIBC_INLINE T hypot(T x, T y) {
if (y_new >= (ONE >> 1)) {
y_new -= ONE >> 1;
++out_exp;
if (out_exp >= FPBits::MAX_EXPONENT) {
if (out_exp >= FPBits_t::MAX_EXPONENT) {
if (round_mode == FE_TONEAREST || round_mode == FE_UPWARD)
return T(FPBits::inf());
return T(FPBits(FPBits::MAX_NORMAL));
return T(FPBits_t::inf());
return T(FPBits_t(FPBits_t::MAX_NORMAL));
}
}

Expand Down
74 changes: 37 additions & 37 deletions libc/src/__support/FPUtil/generic/FMod.h
Original file line number Diff line number Diff line change
Expand Up @@ -123,9 +123,9 @@ template <typename T> struct FModExceptionalInputHandler {
"FModCStandardWrapper instantiated with invalid type.");

LIBC_INLINE static bool pre_check(T x, T y, T &out) {
using FPBits = fputil::FPBits<T>;
const T quiet_nan = FPBits::build_quiet_nan(0);
FPBits sx(x), sy(y);
using FPB = fputil::FPBits<T>;
const T quiet_nan = FPB::build_quiet_nan(0);
FPB sx(x), sy(y);
if (LIBC_LIKELY(!sy.is_zero() && !sy.is_inf_or_nan() &&
!sx.is_inf_or_nan())) {
return false;
Expand Down Expand Up @@ -167,11 +167,11 @@ template <typename T> struct FModFastMathWrapper {

template <typename T> class FModDivisionSimpleHelper {
private:
using UIntType = typename FPBits<T>::UIntType;
using intU_t = typename FPBits<T>::UIntType;

public:
LIBC_INLINE constexpr static UIntType
execute(int exp_diff, int sides_zeroes_count, UIntType m_x, UIntType m_y) {
LIBC_INLINE constexpr static intU_t
execute(int exp_diff, int sides_zeroes_count, intU_t m_x, intU_t m_y) {
while (exp_diff > sides_zeroes_count) {
exp_diff -= sides_zeroes_count;
m_x <<= sides_zeroes_count;
Expand All @@ -185,24 +185,24 @@ template <typename T> class FModDivisionSimpleHelper {

template <typename T> class FModDivisionInvMultHelper {
private:
using FPBits = FPBits<T>;
using UIntType = typename FPBits::UIntType;
using FPB = FPBits<T>;
using intU_t = typename FPB::UIntType;

public:
LIBC_INLINE constexpr static UIntType
execute(int exp_diff, int sides_zeroes_count, UIntType m_x, UIntType m_y) {
LIBC_INLINE constexpr static intU_t
execute(int exp_diff, int sides_zeroes_count, intU_t m_x, intU_t m_y) {
if (exp_diff > sides_zeroes_count) {
UIntType inv_hy = (cpp::numeric_limits<UIntType>::max() / m_y);
intU_t inv_hy = (cpp::numeric_limits<intU_t>::max() / m_y);
while (exp_diff > sides_zeroes_count) {
exp_diff -= sides_zeroes_count;
UIntType hd =
(m_x * inv_hy) >> (FPBits::BIT_WIDTH - sides_zeroes_count);
intU_t hd =
(m_x * inv_hy) >> (FPB::FloatProp::BIT_WIDTH - sides_zeroes_count);
m_x <<= sides_zeroes_count;
m_x -= hd * m_y;
while (LIBC_UNLIKELY(m_x > m_y))
m_x -= m_y;
}
UIntType hd = (m_x * inv_hy) >> (FPBits::BIT_WIDTH - exp_diff);
intU_t hd = (m_x * inv_hy) >> (FPB::FloatProp::BIT_WIDTH - exp_diff);
m_x <<= exp_diff;
m_x -= hd * m_y;
while (LIBC_UNLIKELY(m_x > m_y))
Expand All @@ -222,44 +222,44 @@ class FMod {
"FMod instantiated with invalid type.");

private:
using FPBits = FPBits<T>;
using UIntType = typename FPBits::UIntType;
using FPB = FPBits<T>;
using intU_t = typename FPB::UIntType;

LIBC_INLINE static constexpr FPBits eval_internal(FPBits sx, FPBits sy) {
LIBC_INLINE static constexpr FPB eval_internal(FPB sx, FPB sy) {

if (LIBC_LIKELY(sx.uintval() <= sy.uintval())) {
if (sx.uintval() < sy.uintval())
return sx; // |x|<|y| return x
return FPBits(FPBits::zero()); // |x|=|y| return 0.0
return sx; // |x|<|y| return x
return FPB(FPB::zero()); // |x|=|y| return 0.0
}

int e_x = sx.get_biased_exponent();
int e_y = sy.get_biased_exponent();

// Most common case where |y| is "very normal" and |x/y| < 2^EXPONENT_WIDTH
if (LIBC_LIKELY(e_y > int(FPBits::MANTISSA_WIDTH) &&
e_x - e_y <= int(FPBits::EXPONENT_WIDTH))) {
UIntType m_x = sx.get_explicit_mantissa();
UIntType m_y = sy.get_explicit_mantissa();
UIntType d = (e_x == e_y) ? (m_x - m_y) : (m_x << (e_x - e_y)) % m_y;
if (LIBC_LIKELY(e_y > int(FPB::FloatProp::MANTISSA_WIDTH) &&
e_x - e_y <= int(FPB::FloatProp::EXPONENT_WIDTH))) {
intU_t m_x = sx.get_explicit_mantissa();
intU_t m_y = sy.get_explicit_mantissa();
intU_t d = (e_x == e_y) ? (m_x - m_y) : (m_x << (e_x - e_y)) % m_y;
if (d == 0)
return FPBits(FPBits::zero());
return FPB(FPB::zero());
// iy - 1 because of "zero power" for number with power 1
return FPBits::make_value(d, e_y - 1);
return FPB::make_value(d, e_y - 1);
}
/* Both subnormal special case. */
if (LIBC_UNLIKELY(e_x == 0 && e_y == 0)) {
FPBits d;
FPB d;
d.set_mantissa(sx.uintval() % sy.uintval());
return d;
}

// Note that hx is not subnormal by conditions above.
UIntType m_x = sx.get_explicit_mantissa();
intU_t m_x = sx.get_explicit_mantissa();
e_x--;

UIntType m_y = sy.get_explicit_mantissa();
int lead_zeros_m_y = FPBits::EXPONENT_WIDTH;
intU_t m_y = sy.get_explicit_mantissa();
int lead_zeros_m_y = FPB::FloatProp::EXPONENT_WIDTH;
if (LIBC_LIKELY(e_y > 0)) {
e_y--;
} else {
Expand All @@ -282,34 +282,34 @@ class FMod {

{
// Shift hx left until the end or n = 0
int left_shift = exp_diff < int(FPBits::EXPONENT_WIDTH)
int left_shift = exp_diff < int(FPB::FloatProp::EXPONENT_WIDTH)
? exp_diff
: FPBits::EXPONENT_WIDTH;
: FPB::FloatProp::EXPONENT_WIDTH;
m_x <<= left_shift;
exp_diff -= left_shift;
}

m_x %= m_y;
if (LIBC_UNLIKELY(m_x == 0))
return FPBits(FPBits::zero());
return FPB(FPB::zero());

if (exp_diff == 0)
return FPBits::make_value(m_x, e_y);
return FPB::make_value(m_x, e_y);

/* hx next can't be 0, because hx < hy, hy % 2 == 1 hx * 2^i % hy != 0 */
m_x = DivisionHelper::execute(exp_diff, sides_zeroes_count, m_x, m_y);
return FPBits::make_value(m_x, e_y);
return FPB::make_value(m_x, e_y);
}

public:
LIBC_INLINE static T eval(T x, T y) {
if (T out; Wrapper::pre_check(x, y, out))
return out;
FPBits sx(x), sy(y);
FPB sx(x), sy(y);
bool sign = sx.get_sign();
sx.set_sign(false);
sy.set_sign(false);
FPBits result = eval_internal(sx, sy);
FPB result = eval_internal(sx, sy);
result.set_sign(sign);
return result.get_val();
}
Expand Down
Loading