Skip to content

[MLIR][Presburger] Generating functions and quasi-polynomials for Barvinok's algorithm #75702

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 44 commits into from
Dec 26, 2023

Conversation

Abhinav271828
Copy link
Contributor

Define basic types and classes for Barvinok's algorithm, including polyhedra, generating functions and quasi-polynomials.
The class definitions include methods for arithmetic manipulation, printing, logical relations, etc.

@llvmbot
Copy link
Member

llvmbot commented Dec 16, 2023

@llvm/pr-subscribers-mlir-presburger

@llvm/pr-subscribers-mlir

Author: None (Abhinav271828)

Changes

Define basic types and classes for Barvinok's algorithm, including polyhedra, generating functions and quasi-polynomials.
The class definitions include methods for arithmetic manipulation, printing, logical relations, etc.


Full diff: https://github.com/llvm/llvm-project/pull/75702.diff

1 Files Affected:

  • (added) mlir/include/mlir/Analysis/Presburger/Barvinok.h (+229)
diff --git a/mlir/include/mlir/Analysis/Presburger/Barvinok.h b/mlir/include/mlir/Analysis/Presburger/Barvinok.h
new file mode 100644
index 00000000000000..3ee9d5dc452d0e
--- /dev/null
+++ b/mlir/include/mlir/Analysis/Presburger/Barvinok.h
@@ -0,0 +1,229 @@
+//===- Barvinok.h - Barvinok's Algorithm -----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Functions and classes for Barvinok's algorithm in MLIR.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_ANALYSIS_PRESBURGER_BARVINOK_H
+#define MLIR_ANALYSIS_PRESBURGER_BARVINOK_H
+
+#include "mlir/Analysis/Presburger/Fraction.h"
+#include "mlir/Analysis/Presburger/IntegerRelation.h"
+#include "mlir/Analysis/Presburger/Matrix.h"
+#include "mlir/Analysis/Presburger/PresburgerSpace.h"
+#include "mlir/Analysis/Presburger/Utils.h"
+#include "mlir/Support/LogicalResult.h"
+#include <optional>
+
+namespace mlir {
+namespace presburger {
+
+// The H (inequality) representation of both general
+// polyhedra and cones specifically is an integer relation.
+using PolyhedronH = IntegerRelation;
+using ConeH = PolyhedronH;
+
+// The V (generator) representation of both general
+// polyhedra and cones specifically is simply a matrix
+// whose rows are the generators.
+using PolyhedronV = Matrix<MPInt>;
+using ConeV = PolyhedronV;
+
+// A parametric point is a vector, each of whose elements
+// is an affine function of n parameters. Each row
+// in the matrix represents the affine function and
+// has n+1 elements.
+using ParamPoint = Matrix<Fraction>;
+
+// A point is simply a vector.
+using Point = SmallVector<Fraction>;
+
+// A class to describe the type of generating function
+// used to enumerate the integer points in a polytope.
+// Consists of a set of terms, where the ith term has
+// * a sign, ±1, stored in `signs[i]`
+// * a numerator, of the form x^{n},
+//      where n, stored in `numerators[i]`,
+//      is a parametric point (a vertex).
+// * a denominator, of the form (1 - x^{d1})...(1 - x^{dn}),
+//      where each dj, stored in `denominators[i][j]`,
+//      is a vector (a generator).
+class GeneratingFunction {
+public:
+  GeneratingFunction(SmallVector<int, 16> s, std::vector<ParamPoint> nums,
+                     std::vector<std::vector<Point>> dens)
+      : signs(s), numerators(nums), denominators(dens){};
+
+  unsigned getNumParams() {
+    for (auto term : numerators)
+      return (term.getNumColumns() - 1);
+    return -1;
+  }
+
+  bool operator==(const GeneratingFunction &gf) const {
+    if (signs != gf.signs || numerators != gf.numerators ||
+        denominators != gf.denominators)
+      return false;
+    return true;
+  }
+
+  GeneratingFunction operator+(const GeneratingFunction &gf) {
+    bool sameNumParams = (getNumParams() == -1) || (gf.getNumParams() == -1) ||
+                         (getNumParams() == gf.getNumParams());
+    assert(
+        sameNumParams &&
+        "two generators with different numbers of parameters cannot be added!");
+    signs.insert(signs.end(), gf.signs.begin(), gf.signs.end());
+    numerators.insert(numerators.end(), gf.numerators.begin(),
+                      gf.numerators.end());
+    denominators.insert(denominators.end(), gf.denominators.begin(),
+                        gf.denominators.end());
+    return *this;
+  }
+
+  llvm::raw_ostream &print(llvm::raw_ostream &os) const {
+    for (unsigned i = 0; i < signs.size(); i++) {
+      if (signs[i] == 1)
+        os << "+";
+      else
+        os << "-";
+
+      os << "*(x^[";
+      for (unsigned j = 0; j < numerators[i].size() - 1; j++)
+        os << numerators[i][j] << ",";
+      os << numerators[i][numerators[i].size() - 1] << "])/";
+
+      for (Point den : denominators[i]) {
+        os << "(x^[";
+        for (unsigned j = 0; j < den.size(); j++)
+          os << den[j] << ",";
+        os << den[den.size() - 1] << "])";
+      }
+    }
+    return os;
+  }
+
+  SmallVector<int, 16> signs;
+  std::vector<ParamPoint> numerators;
+  std::vector<std::vector<Point>> denominators;
+};
+
+// A class to describe the quasi-polynomials obtained by
+// substituting the unit vector in the type of generating
+// function described above.
+// Consists of a set of terms.
+// The ith term is a constant `coefficients[i]`, multiplied
+// by the product of a set of affine functions on n parameters.
+class QuasiPolynomial {
+public:
+  QuasiPolynomial(SmallVector<Fraction> coeffs = {},
+                  std::vector<std::vector<SmallVector<Fraction>>> aff = {})
+      : coefficients(coeffs), affine(aff){};
+
+  QuasiPolynomial(Fraction cons) : coefficients({cons}), affine({{}}){};
+
+  QuasiPolynomial(QuasiPolynomial const &) = default;
+
+  SmallVector<Fraction> coefficients;
+  std::vector<std::vector<SmallVector<Fraction>>> affine;
+
+  // Find the number of parameters involved in the polynomial
+  // from the dimensionality of the affine functions.
+  unsigned getNumParams() {
+    // Find the first term which involves some affine function.
+    for (auto term : affine) {
+      if (term.size() == 0)
+        continue;
+      // The number of elements in the affine function is
+      // one more than the number of parameters.
+      return (term[0].size() - 1);
+    }
+    // The polynomial can be treated as having any number
+    // of parameters.
+    return -1;
+  }
+
+  QuasiPolynomial operator+(const QuasiPolynomial &x) {
+    bool sameNumParams = (getNumParams() == -1) || (x.getNumParams() == -1) ||
+                         (getNumParams() == x.getNumParams());
+    assert(sameNumParams && "two quasi-polynomials with different numbers of "
+                            "parameters cannot be added!");
+    coefficients.append(x.coefficients);
+    affine.insert(affine.end(), x.affine.begin(), x.affine.end());
+    return *this;
+  }
+
+  QuasiPolynomial operator-(const QuasiPolynomial &x) {
+    bool sameNumParams = (getNumParams() == -1) || (x.getNumParams() == -1) ||
+                         (getNumParams() == x.getNumParams());
+    assert(sameNumParams && "two quasi-polynomials with different numbers of "
+                            "parameters cannot be subtracted!");
+    QuasiPolynomial qp(x.coefficients, x.affine);
+    for (unsigned i = 0; i < x.coefficients.size(); i++)
+      qp.coefficients[i] = -qp.coefficients[i];
+    return (*this + qp);
+  }
+
+  QuasiPolynomial operator*(const QuasiPolynomial &x) {
+    bool sameNumParams = (getNumParams() == -1) || (x.getNumParams() == -1) ||
+                         (getNumParams() == x.getNumParams());
+    assert(sameNumParams && "two quasi-polynomials with different numbers of "
+                            "parameters cannot be multiplied!");
+    QuasiPolynomial qp();
+    std::vector<SmallVector<Fraction>> product;
+    for (unsigned i = 0; i < coefficients.size(); i++) {
+      for (unsigned j = 0; j < x.coefficients.size(); j++) {
+        qp.coefficients.append({coefficients[i] * x.coefficients[j]});
+
+        product.clear();
+        product.insert(product.end(), affine[i].begin(), affine[i].end());
+        product.insert(product.end(), x.affine[j].begin(), x.affine[j].end());
+
+        qp.affine.push_back(product);
+      }
+    }
+
+    return qp;
+  }
+
+  QuasiPolynomial operator/(Fraction x) {
+    assert(x != 0 && "division by zero!");
+    for (unsigned i = 0; i < coefficients.size(); i++)
+      coefficients[i] = coefficients[i] / x;
+    return *this;
+  };
+
+  // Removes terms which evaluate to zero from the expression.
+  QuasiPolynomial reduce() {
+    SmallVector<Fraction> newCoeffs({});
+    std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
+    bool prodIsNonz, sumIsNonz;
+    for (unsigned i = 0; i < coefficients.size(); i++) {
+      prodIsNonz = true;
+      for (unsigned j = 0; j < affine[i].size(); j++) {
+        sumIsNonz = false;
+        for (unsigned k = 0; k < affine[i][j].size(); k++)
+          if (affine[i][j][k] != Fraction(0, 1))
+            sumIsNonz = true;
+        if (sumIsNonz == false)
+          prodIsNonz = false;
+      }
+      if (prodIsNonz == true && coefficients[i] != Fraction(0, 1)) {
+        newCoeffs.append({coefficients[i]});
+        newAffine.push_back({affine[i]});
+      }
+    }
+    return QuasiPolynomial(newCoeffs, newAffine);
+  }
+};
+
+} // namespace presburger
+} // namespace mlir
+
+#endif // MLIR_ANALYSIS_PRESBURGER_BARVINOK_H
\ No newline at end of file

@Superty Superty self-requested a review December 16, 2023 16:25
Copy link
Member

@Superty Superty left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Long patch; starting with reviewing the GF

Copy link
Member

@Superty Superty left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add some tests.

Copy link

github-actions bot commented Dec 19, 2023

⚠️ C/C++ code formatter, clang-format found issues in your code. ⚠️

You can test this locally with the following command:
git-clang-format --diff 50f5b5a80bedee08fd4c46fcd171a1c85ee3834b 8b4dd2f4f08860ae3de42f417b4f60c5addee008 -- mlir/include/mlir/Analysis/Presburger/QuasiPolynomial.h mlir/lib/Analysis/Presburger/GeneratingFunction.h mlir/lib/Analysis/Presburger/QuasiPolynomial.cpp mlir/unittests/Analysis/Presburger/QuasiPolynomialTest.cpp mlir/unittests/Analysis/Presburger/Utils.h
View the diff from clang-format here.
diff --git a/mlir/unittests/Analysis/Presburger/Utils.h b/mlir/unittests/Analysis/Presburger/Utils.h
index 2a9966c7ce..a410ffefe0 100644
--- a/mlir/unittests/Analysis/Presburger/Utils.h
+++ b/mlir/unittests/Analysis/Presburger/Utils.h
@@ -74,7 +74,8 @@ inline void EXPECT_EQ_FRAC_MATRIX(FracMatrix a, FracMatrix b) {
 
 // Check the coefficients (in order) of two quasipolynomials.
 // Note that this is not a true equality check.
-inline void EXPECT_EQ_REPR_QUASIPOLYNOMIAL(QuasiPolynomial a, QuasiPolynomial b) {
+inline void EXPECT_EQ_REPR_QUASIPOLYNOMIAL(QuasiPolynomial a,
+                                           QuasiPolynomial b) {
   EXPECT_EQ(a.getNumInputs(), b.getNumInputs());
 
   SmallVector<Fraction> aCoeffs = a.getCoefficients(),

@Superty Superty merged commit 1022feb into llvm:main Dec 26, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants