Skip to content

[InstSimplify] Fold u/sdiv exact (mul nsw/nuw X, C), C --> X when C is not a power of 2 #76445

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Dec 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 19 additions & 7 deletions llvm/lib/Analysis/InstructionSimplify.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1189,14 +1189,26 @@ static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse))
return V;

// If this is an exact divide by a constant, then the dividend (Op0) must have
// at least as many trailing zeros as the divisor to divide evenly. If it has
// less trailing zeros, then the result must be poison.
const APInt *DivC;
if (IsExact && match(Op1, m_APInt(DivC)) && DivC->countr_zero()) {
KnownBits KnownOp0 = computeKnownBits(Op0, /* Depth */ 0, Q);
if (KnownOp0.countMaxTrailingZeros() < DivC->countr_zero())
return PoisonValue::get(Op0->getType());
if (IsExact && match(Op1, m_APInt(DivC))) {
// If this is an exact divide by a constant, then the dividend (Op0) must
// have at least as many trailing zeros as the divisor to divide evenly. If
// it has less trailing zeros, then the result must be poison.
if (DivC->countr_zero()) {
KnownBits KnownOp0 = computeKnownBits(Op0, /* Depth */ 0, Q);
if (KnownOp0.countMaxTrailingZeros() < DivC->countr_zero())
return PoisonValue::get(Op0->getType());
}

// udiv exact (mul nsw X, C), C --> X
// sdiv exact (mul nuw X, C), C --> X
// where C is not a power of 2.
Value *X;
if (!DivC->isPowerOf2() &&
(Opcode == Instruction::UDiv
? match(Op0, m_NSWMul(m_Value(X), m_Specific(Op1)))
: match(Op0, m_NUWMul(m_Value(X), m_Specific(Op1)))))
return X;
}

return nullptr;
Expand Down
97 changes: 97 additions & 0 deletions llvm/test/Transforms/InstSimplify/div.ll
Original file line number Diff line number Diff line change
Expand Up @@ -567,3 +567,100 @@ define <2 x i8> @sdiv_vec_multi_one_bit_divisor(<2 x i8> %x, <2 x i8> %y) {
%res = sdiv <2 x i8> %y, %and
ret <2 x i8> %res
}

define i8 @udiv_exact_mul_nsw(i8 %x) {
; CHECK-LABEL: @udiv_exact_mul_nsw(
; CHECK-NEXT: ret i8 [[X:%.*]]
;
%a = mul nsw i8 %x, 24
%b = udiv exact i8 %a, 24
ret i8 %b
}

define i8 @sdiv_exact_mul_nuw(i8 %x) {
; CHECK-LABEL: @sdiv_exact_mul_nuw(
; CHECK-NEXT: ret i8 [[X:%.*]]
;
%a = mul nuw i8 %x, 24
%b = sdiv exact i8 %a, 24
ret i8 %b
}

; Negative tests

define i8 @udiv_exact_mul_nsw_mismatch(i8 %x) {
; CHECK-LABEL: @udiv_exact_mul_nsw_mismatch(
; CHECK-NEXT: [[A:%.*]] = mul nsw i8 [[X:%.*]], 24
; CHECK-NEXT: [[B:%.*]] = udiv exact i8 [[A]], 12
; CHECK-NEXT: ret i8 [[B]]
;
%a = mul nsw i8 %x, 24
%b = udiv exact i8 %a, 12
ret i8 %b
}

define i8 @udiv_exact_mul_nsw_power_of_2(i8 %x) {
; CHECK-LABEL: @udiv_exact_mul_nsw_power_of_2(
; CHECK-NEXT: [[A:%.*]] = mul nsw i8 [[X:%.*]], 8
; CHECK-NEXT: [[B:%.*]] = udiv exact i8 [[A]], 8
; CHECK-NEXT: ret i8 [[B]]
;
%a = mul nsw i8 %x, 8
%b = udiv exact i8 %a, 8
ret i8 %b
}

define i8 @sdiv_exact_mul_nuw_power_of_2(i8 %x) {
; CHECK-LABEL: @sdiv_exact_mul_nuw_power_of_2(
; CHECK-NEXT: [[A:%.*]] = mul nuw i8 [[X:%.*]], 8
; CHECK-NEXT: [[B:%.*]] = sdiv exact i8 [[A]], 8
; CHECK-NEXT: ret i8 [[B]]
;
%a = mul nuw i8 %x, 8
%b = sdiv exact i8 %a, 8
ret i8 %b
}

define i8 @udiv_exact_mul(i8 %x) {
; CHECK-LABEL: @udiv_exact_mul(
; CHECK-NEXT: [[A:%.*]] = mul i8 [[X:%.*]], 24
; CHECK-NEXT: [[B:%.*]] = udiv exact i8 [[A]], 24
; CHECK-NEXT: ret i8 [[B]]
;
%a = mul i8 %x, 24
%b = udiv exact i8 %a, 24
ret i8 %b
}

define i8 @sdiv_exact_mul(i8 %x) {
; CHECK-LABEL: @sdiv_exact_mul(
; CHECK-NEXT: [[A:%.*]] = mul i8 [[X:%.*]], 24
; CHECK-NEXT: [[B:%.*]] = sdiv exact i8 [[A]], 24
; CHECK-NEXT: ret i8 [[B]]
;
%a = mul i8 %x, 24
%b = sdiv exact i8 %a, 24
ret i8 %b
}

define i8 @udiv_mul_nsw(i8 %x) {
; CHECK-LABEL: @udiv_mul_nsw(
; CHECK-NEXT: [[A:%.*]] = mul nsw i8 [[X:%.*]], 24
; CHECK-NEXT: [[B:%.*]] = udiv i8 [[A]], 24
; CHECK-NEXT: ret i8 [[B]]
;
%a = mul nsw i8 %x, 24
%b = udiv i8 %a, 24
ret i8 %b
}

define i8 @sdiv_mul_nuw(i8 %x) {
; CHECK-LABEL: @sdiv_mul_nuw(
; CHECK-NEXT: [[A:%.*]] = mul nuw i8 [[X:%.*]], 24
; CHECK-NEXT: [[B:%.*]] = sdiv i8 [[A]], 24
; CHECK-NEXT: ret i8 [[B]]
;
%a = mul nuw i8 %x, 24
%b = sdiv i8 %a, 24
ret i8 %b
}