Skip to content

[mlir][sparse] add a 3-d block and fiber test #78529

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jan 18, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
122 changes: 122 additions & 0 deletions mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block3d.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------

// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// RUN: %{compile} | %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}

#Sparse1 = #sparse_tensor.encoding<{
map = (i, j, k) -> (
i : compressed,
j : compressed,
k : compressed
)
}>

#Sparse2 = #sparse_tensor.encoding<{
map = (i, j, k) -> (
i floordiv 2 : compressed,
j floordiv 2 : compressed,
k floordiv 2 : compressed,
i mod 2 : dense,
j mod 2 : dense,
k mod 2 : dense)
}>

module {

//
// Main driver that tests sparse tensor storage.
//
func.func @main() {
%c0 = arith.constant 0 : index
%i0 = arith.constant 0 : i32

// Setup input dense tensor and convert to two sparse tensors.
%d = arith.constant dense <[
[ // i=0
[ 1, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 5, 0 ] ],
[ // i=1
[ 2, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 6, 0 ] ],
[ //i=2
[ 3, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 7, 0 ] ],
//i=3
[ [ 4, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 8, 0 ] ]
]> : tensor<4x4x4xi32>

%a = sparse_tensor.convert %d : tensor<4x4x4xi32> to tensor<4x4x4xi32, #Sparse1>
%b = sparse_tensor.convert %d : tensor<4x4x4xi32> to tensor<4x4x4xi32, #Sparse2>

//
// If we store the two "fibers" [1,2,3,4] starting at index (0,0,0) and
// ending at index (3,0,0) and [5,6,7,8] starting at index (0,3,2) and
// ending at index (3,3,2)) with a “DCSR-flavored” along (j,k) with
// dense “fibers” in the i-dim, we end up with 8 stored entries.
//
// CHECK: 8
// CHECK-NEXT: ( 1, 5, 2, 6, 3, 7, 4, 8 )
//
%na = sparse_tensor.number_of_entries %a : tensor<4x4x4xi32, #Sparse1>
vector.print %na : index
%ma = sparse_tensor.values %a: tensor<4x4x4xi32, #Sparse1> to memref<?xi32>
%va = vector.transfer_read %ma[%c0], %i0: memref<?xi32>, vector<8xi32>
vector.print %va : vector<8xi32>

//
// If we store full 2x2x2 3-D blocks in the original index order
// in a compressed fashion, we end up with 4 blocks to incorporate
// all the nonzeros, and thus 32 stored entries.
//
// CHECK: 32
// CHECK-NEXT: ( 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 6, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 7, 0, 0, 0, 8, 0 )
//
%nb = sparse_tensor.number_of_entries %b : tensor<4x4x4xi32, #Sparse2>
vector.print %nb : index
%mb = sparse_tensor.values %b: tensor<4x4x4xi32, #Sparse2> to memref<?xi32>
%vb = vector.transfer_read %mb[%c0], %i0: memref<?xi32>, vector<32xi32>
vector.print %vb : vector<32xi32>

// Release the resources.
bufferization.dealloc_tensor %a : tensor<4x4x4xi32, #Sparse1>
bufferization.dealloc_tensor %b : tensor<4x4x4xi32, #Sparse2>

return
}
}