Skip to content

Revert "[mlir][complex] Prevent underflow in complex.abs" #79722

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 14 additions & 42 deletions mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -26,57 +26,29 @@ namespace mlir {
using namespace mlir;

namespace {
// The algorithm is listed in https://dl.acm.org/doi/pdf/10.1145/363717.363780.
struct AbsOpConversion : public OpConversionPattern<complex::AbsOp> {
using OpConversionPattern<complex::AbsOp>::OpConversionPattern;

LogicalResult
matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
auto loc = op.getLoc();
auto type = op.getType();

arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

Type elementType = op.getType();
Value arg = adaptor.getComplex();

Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1.0));

Value real = b.create<complex::ReOp>(elementType, arg);
Value imag = b.create<complex::ImOp>(elementType, arg);

Value realIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero);
Value imagIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero);

// Real > Imag
Value imagDivReal = b.create<arith::DivFOp>(imag, real, fmf.getValue());
Value imagSq =
b.create<arith::MulFOp>(imagDivReal, imagDivReal, fmf.getValue());
Value imagSqPlusOne = b.create<arith::AddFOp>(imagSq, one, fmf.getValue());
Value imagSqrt = b.create<math::SqrtOp>(imagSqPlusOne, fmf.getValue());
Value absImag = b.create<arith::MulFOp>(imagSqrt, real, fmf.getValue());

// Real <= Imag
Value realDivImag = b.create<arith::DivFOp>(real, imag, fmf.getValue());
Value realSq =
b.create<arith::MulFOp>(realDivImag, realDivImag, fmf.getValue());
Value realSqPlusOne = b.create<arith::AddFOp>(realSq, one, fmf.getValue());
Value realSqrt = b.create<math::SqrtOp>(realSqPlusOne, fmf.getValue());
Value absReal = b.create<arith::MulFOp>(realSqrt, imag, fmf.getValue());

rewriter.replaceOpWithNewOp<arith::SelectOp>(
op, realIsZero, imag,
b.create<arith::SelectOp>(
imagIsZero, real,
b.create<arith::SelectOp>(
b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, real, imag),
absImag, absReal)));

Value real =
rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex());
Value realSqr =
rewriter.create<arith::MulFOp>(loc, real, real, fmf.getValue());
Value imagSqr =
rewriter.create<arith::MulFOp>(loc, imag, imag, fmf.getValue());
Value sqNorm =
rewriter.create<arith::AddFOp>(loc, realSqr, imagSqr, fmf.getValue());

rewriter.replaceOpWithNewOp<math::SqrtOp>(op, sqNorm);
return success();
}
};
Expand Down
115 changes: 22 additions & 93 deletions mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -7,28 +7,13 @@ func.func @complex_abs(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg: complex<f32>
return %abs : f32
}

// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
// CHECK: %[[ABS3:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
// CHECK: return %[[ABS3]] : f32
// CHECK-DAG: %[[REAL_SQ:.*]] = arith.mulf %[[REAL]], %[[REAL]] : f32
// CHECK-DAG: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[REAL_SQ]], %[[IMAG_SQ]] : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: return %[[NORM]] : f32

// -----

Expand Down Expand Up @@ -256,26 +241,12 @@ func.func @complex_log(%arg: complex<f32>) -> complex<f32> {
%log = complex.log %arg: complex<f32>
return %log : complex<f32>
}
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL]], %[[REAL]] : f32
// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[RESULT_REAL:.*]] = math.log %[[NORM]] : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
Expand Down Expand Up @@ -498,26 +469,12 @@ func.func @complex_sign(%arg: complex<f32>) -> complex<f32> {
// CHECK: %[[REAL_IS_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IMAG_IS_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IS_ZERO:.*]] = arith.andi %[[REAL_IS_ZERO]], %[[IMAG_IS_ZERO]] : i1
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL2]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG2]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG2]], %[[REAL2]] : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL2]] : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL2]], %[[IMAG2]] : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG2]] : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL2]], %[[IMAG2]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL2]], %[[ABS1]] : f32
// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG2]], %[[ABS2]] : f32
// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL2]], %[[REAL2]] : f32
// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG2]], %[[IMAG2]] : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[REAL_SIGN:.*]] = arith.divf %[[REAL]], %[[NORM]] : f32
// CHECK: %[[IMAG_SIGN:.*]] = arith.divf %[[IMAG]], %[[NORM]] : f32
// CHECK: %[[SIGN:.*]] = complex.create %[[REAL_SIGN]], %[[IMAG_SIGN]] : complex<f32>
Expand Down Expand Up @@ -759,27 +716,13 @@ func.func @complex_abs_with_fmf(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg fastmath<nnan,contract> : complex<f32>
return %abs : f32
}
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
// CHECK: %[[ABS3:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
// CHECK: return %[[ABS3]] : f32
// CHECK-DAG: %[[REAL_SQ:.*]] = arith.mulf %[[REAL]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK-DAG: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[REAL_SQ]], %[[IMAG_SQ]] fastmath<nnan,contract> : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: return %[[NORM]] : f32

// -----

Expand Down Expand Up @@ -864,26 +807,12 @@ func.func @complex_log_with_fmf(%arg: complex<f32>) -> complex<f32> {
%log = complex.log %arg fastmath<nnan,contract> : complex<f32>
return %log : complex<f32>
}
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[RESULT_REAL:.*]] = math.log %[[NORM]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
Expand Down
25 changes: 4 additions & 21 deletions mlir/test/Conversion/ComplexToStandard/full-conversion.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -6,29 +6,12 @@ func.func @complex_abs(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg: complex<f32>
return %abs : f32
}
// CHECK: %[[ZERO:.*]] = llvm.mlir.constant(0.000000e+00 : f32) : f32
// CHECK: %[[ONE:.*]] = llvm.mlir.constant(1.000000e+00 : f32) : f32
// CHECK: %[[REAL:.*]] = llvm.extractvalue %[[ARG]][0] : ![[C_TY]]
// CHECK: %[[IMAG:.*]] = llvm.extractvalue %[[ARG]][1] : ![[C_TY]]
// CHECK: %[[REAL_IS_ZERO:.*]] = llvm.fcmp "oeq" %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IMAG_IS_ZERO:.*]] = llvm.fcmp "oeq" %[[IMAG]], %[[ZERO]] : f32

// CHECK: %[[IMAG_DIV_REAL:.*]] = llvm.fdiv %[[IMAG]], %[[REAL]] : f32
// CHECK: %[[IMAG_SQ:.*]] = llvm.fmul %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = llvm.fadd %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = llvm.intr.sqrt(%[[IMAG_SQ_PLUS_ONE]]) : (f32) -> f32
// CHECK: %[[ABS_IMAG:.*]] = llvm.fmul %[[IMAG_SQRT]], %[[REAL]] : f32

// CHECK: %[[REAL_DIV_IMAG:.*]] = llvm.fdiv %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[REAL_SQ:.*]] = llvm.fmul %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = llvm.fadd %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = llvm.intr.sqrt(%[[REAL_SQ_PLUS_ONE]]) : (f32) -> f32
// CHECK: %[[ABS_REAL:.*]] = llvm.fmul %[[REAL_SQRT]], %[[IMAG]] : f32

// CHECK: %[[REAL_GT_IMAG:.*]] = llvm.fcmp "ogt" %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = llvm.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : i1, f32
// CHECK: %[[ABS2:.*]] = llvm.select %[[IMAG_IS_ZERO]], %[[REAL]], %[[ABS1]] : i1, f32
// CHECK: %[[NORM:.*]] = llvm.select %[[REAL_IS_ZERO]], %[[IMAG]], %[[ABS2]] : i1, f32
// CHECK-DAG: %[[REAL_SQ:.*]] = llvm.fmul %[[REAL]], %[[REAL]] : f32
// CHECK-DAG: %[[IMAG_SQ:.*]] = llvm.fmul %[[IMAG]], %[[IMAG]] : f32
// CHECK: %[[SQ_NORM:.*]] = llvm.fadd %[[REAL_SQ]], %[[IMAG_SQ]] : f32
// CHECK: %[[NORM:.*]] = llvm.intr.sqrt(%[[SQ_NORM]]) : (f32) -> f32
// CHECK: llvm.return %[[NORM]] : f32

// CHECK-LABEL: llvm.func @complex_eq
Expand Down
44 changes: 0 additions & 44 deletions mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -106,27 +106,6 @@ func.func @angle(%arg: complex<f32>) -> f32 {
func.return %angle : f32
}

func.func @test_element_f64(%input: tensor<?xcomplex<f64>>,
%func: (complex<f64>) -> f64) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%size = tensor.dim %input, %c0: tensor<?xcomplex<f64>>

scf.for %i = %c0 to %size step %c1 {
%elem = tensor.extract %input[%i]: tensor<?xcomplex<f64>>

%val = func.call_indirect %func(%elem) : (complex<f64>) -> f64
vector.print %val : f64
scf.yield
}
func.return
}

func.func @abs(%arg: complex<f64>) -> f64 {
%abs = complex.abs %arg : complex<f64>
func.return %abs : f64
}

func.func @entry() {
// complex.sqrt test
%sqrt_test = arith.constant dense<[
Expand Down Expand Up @@ -321,28 +300,5 @@ func.func @entry() {
call @test_element(%angle_test_cast, %angle_func)
: (tensor<?xcomplex<f32>>, (complex<f32>) -> f32) -> ()

// complex.abs test
%abs_test = arith.constant dense<[
(1.0, 1.0),
// CHECK: 1.414
(1.0e300, 1.0e300),
// CHECK-NEXT: 1.41421e+300
(1.0e-300, 1.0e-300),
// CHECK-NEXT: 1.41421e-300
(5.0, 0.0),
// CHECK-NEXT: 5
(0.0, 6.0),
// CHECK-NEXT: 6
(7.0, 8.0)
// CHECK-NEXT: 10.6301
]> : tensor<6xcomplex<f64>>
%abs_test_cast = tensor.cast %abs_test
: tensor<6xcomplex<f64>> to tensor<?xcomplex<f64>>

%abs_func = func.constant @abs : (complex<f64>) -> f64

call @test_element_f64(%abs_test_cast, %abs_func)
: (tensor<?xcomplex<f64>>, (complex<f64>) -> f64) -> ()

func.return
}