Skip to content

[mlir][VectorOps] Add vector.interleave operation #80315

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -478,6 +478,69 @@ def Vector_ShuffleOp :
let hasCanonicalizer = 1;
}

def Vector_InterleaveOp :
Vector_Op<"interleave", [Pure,
AllTypesMatch<["lhs", "rhs"]>,
TypesMatchWith<
"type of 'result' is double the width of the inputs",
"lhs", "result",
[{
[&]() -> ::mlir::VectorType {
auto vectorType = ::llvm::cast<mlir::VectorType>($_self);
::mlir::VectorType::Builder builder(vectorType);
if (vectorType.getRank() == 0) {
static constexpr int64_t v2xty_shape[] = { 2 };
return builder.setShape(v2xty_shape);
}
auto lastDim = vectorType.getRank() - 1;
return builder.setDim(lastDim, vectorType.getDimSize(lastDim) * 2);
}()
}]>]> {
let summary = "constructs a vector by interleaving two input vectors";
let description = [{
The interleave operation constructs a new vector by interleaving the
elements from the trailing (or final) dimension of two input vectors,
returning a new vector where the trailing dimension is twice the size.

Note that for the n-D case this differs from the interleaving possible with
`vector.shuffle`, which would only operate on the leading dimension.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I thought we didn't even support n-D cases in vector.shuffle

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It does (as can be seen in the examples at: https://mlir.llvm.org/docs/Dialects/Vector/#vectorshuffle-vectorshuffleop), it just does not do what you'd want 😔


Another key difference is this operation supports scalable vectors, though
currently a general LLVM lowering is limited to the case where only the
trailing dimension is scalable.

Example:
```mlir
%0 = vector.interleave %a, %b
: vector<[4]xi32> ; yields vector<[8]xi32>
%1 = vector.interleave %c, %d
: vector<8xi8> ; yields vector<16xi8>
%2 = vector.interleave %e, %f
: vector<f16> ; yields vector<2xf16>
%3 = vector.interleave %g, %h
: vector<2x4x[2]xf64> ; yields vector<2x4x[4]xf64>
%4 = vector.interleave %i, %j
: vector<6x3xf32> ; yields vector<6x6xf32>
```
}];

let arguments = (ins AnyVectorOfAnyRank:$lhs, AnyVectorOfAnyRank:$rhs);
let results = (outs AnyVector:$result);

let assemblyFormat = [{
$lhs `,` $rhs attr-dict `:` type($lhs)
}];

let extraClassDeclaration = [{
VectorType getSourceVectorType() {
return ::llvm::cast<VectorType>(getLhs().getType());
}
VectorType getResultVectorType() {
return ::llvm::cast<VectorType>(getResult().getType());
}
}];
}

def Vector_ExtractElementOp :
Vector_Op<"extractelement", [Pure,
TypesMatchWith<"result type matches element type of vector operand",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -264,6 +264,14 @@ void populateVectorMaskLoweringPatternsForSideEffectingOps(
void populateVectorMaskedLoadStoreEmulationPatterns(RewritePatternSet &patterns,
PatternBenefit benefit = 1);

/// Populate the pattern set with the following patterns:
///
/// [InterleaveOpLowering]
/// Progressive lowering of InterleaveOp to ExtractOp + InsertOp + lower-D
/// InterleaveOp until dim 1.
void populateVectorInterleaveLoweringPatterns(RewritePatternSet &patterns,
PatternBenefit benefit = 1);

} // namespace vector
} // namespace mlir
#endif // MLIR_DIALECT_VECTOR_TRANSFORMS_LOWERINGPATTERNS_H
41 changes: 40 additions & 1 deletion mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1734,6 +1734,44 @@ struct VectorSplatNdOpLowering : public ConvertOpToLLVMPattern<SplatOp> {
}
};

/// Conversion pattern for a `vector.interleave`.
/// This supports fixed-sized vectors and scalable vectors.
struct VectorInterleaveOpLowering
: public ConvertOpToLLVMPattern<vector::InterleaveOp> {
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;

LogicalResult
matchAndRewrite(vector::InterleaveOp interleaveOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType resultType = interleaveOp.getResultVectorType();
// n-D interleaves should have been lowered already.
if (resultType.getRank() != 1)
return failure();
// If the result is rank 1, then this directly maps to LLVM.
if (resultType.isScalable()) {
rewriter.replaceOpWithNewOp<LLVM::experimental_vector_interleave2>(
interleaveOp, typeConverter->convertType(resultType),
adaptor.getLhs(), adaptor.getRhs());
return success();
}
// Lower fixed-size interleaves to a shufflevector. While the
// vector.interleave2 intrinsic supports fixed and scalable vectors, the
// langref still recommends fixed-vectors use shufflevector, see:
// https://llvm.org/docs/LangRef.html#id876.
int64_t resultVectorSize = resultType.getNumElements();
SmallVector<int32_t> interleaveShuffleMask;
interleaveShuffleMask.reserve(resultVectorSize);
for (int i = 0, end = resultVectorSize / 2; i < end; ++i) {
interleaveShuffleMask.push_back(i);
interleaveShuffleMask.push_back((resultVectorSize / 2) + i);
}
rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(
interleaveOp, adaptor.getLhs(), adaptor.getRhs(),
interleaveShuffleMask);
return success();
}
};

} // namespace

/// Populate the given list with patterns that convert from Vector to LLVM.
Expand All @@ -1758,7 +1796,8 @@ void mlir::populateVectorToLLVMConversionPatterns(
VectorExpandLoadOpConversion, VectorCompressStoreOpConversion,
VectorSplatOpLowering, VectorSplatNdOpLowering,
VectorScalableInsertOpLowering, VectorScalableExtractOpLowering,
MaskedReductionOpConversion>(converter);
MaskedReductionOpConversion, VectorInterleaveOpLowering>(
converter);
// Transfer ops with rank > 1 are handled by VectorToSCF.
populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1);
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ void LowerVectorToLLVMPass::runOnOperation() {
populateVectorContractLoweringPatterns(patterns, VectorTransformsOptions());
populateVectorMaskOpLoweringPatterns(patterns);
populateVectorShapeCastLoweringPatterns(patterns);
populateVectorInterleaveLoweringPatterns(patterns);
populateVectorTransposeLoweringPatterns(patterns,
VectorTransformsOptions());
// Vector transfer ops with rank > 1 should be lowered with VectorToSCF.
Expand Down
43 changes: 42 additions & 1 deletion mlir/lib/Dialect/Vector/IR/VectorOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2478,11 +2478,52 @@ class ShuffleSplat final : public OpRewritePattern<ShuffleOp> {
}
};

/// Pattern to rewrite a fixed-size interleave via vector.shuffle to
/// vector.interleave.
class ShuffleInterleave : public OpRewritePattern<ShuffleOp> {
public:
using OpRewritePattern::OpRewritePattern;

LogicalResult matchAndRewrite(ShuffleOp op,
PatternRewriter &rewriter) const override {
VectorType resultType = op.getResultVectorType();
if (resultType.isScalable())
return rewriter.notifyMatchFailure(
op, "ShuffleOp can't represent a scalable interleave");

if (resultType.getRank() != 1)
return rewriter.notifyMatchFailure(
op, "ShuffleOp can't represent an n-D interleave");

VectorType sourceType = op.getV1VectorType();
if (sourceType != op.getV2VectorType() ||
ArrayRef<int64_t>{sourceType.getNumElements() * 2} !=
resultType.getShape()) {
return rewriter.notifyMatchFailure(
op, "ShuffleOp types don't match an interleave");
}

ArrayAttr shuffleMask = op.getMask();
int64_t resultVectorSize = resultType.getNumElements();
for (int i = 0, e = resultVectorSize / 2; i < e; ++i) {
int64_t maskValueA = cast<IntegerAttr>(shuffleMask[i * 2]).getInt();
int64_t maskValueB = cast<IntegerAttr>(shuffleMask[(i * 2) + 1]).getInt();
if (maskValueA != i || maskValueB != (resultVectorSize / 2) + i)
return rewriter.notifyMatchFailure(op,
"ShuffleOp mask not interleaving");
}

rewriter.replaceOpWithNewOp<InterleaveOp>(op, op.getV1(), op.getV2());
return success();
}
};

} // namespace

void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ShuffleSplat, Canonicalize0DShuffleOp>(context);
results.add<ShuffleSplat, ShuffleInterleave, Canonicalize0DShuffleOp>(
context);
}

//===----------------------------------------------------------------------===//
Expand Down
1 change: 1 addition & 0 deletions mlir/lib/Dialect/Vector/Transforms/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ add_mlir_dialect_library(MLIRVectorTransforms
LowerVectorBroadcast.cpp
LowerVectorContract.cpp
LowerVectorGather.cpp
LowerVectorInterleave.cpp
LowerVectorMask.cpp
LowerVectorMultiReduction.cpp
LowerVectorScan.cpp
Expand Down
64 changes: 64 additions & 0 deletions mlir/lib/Dialect/Vector/Transforms/LowerVectorInterleave.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
//===- LowerVectorInterleave.cpp - Lower 'vector.interleave' operation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.interleave' operation.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"

#define DEBUG_TYPE "vector-interleave-lowering"

using namespace mlir;
using namespace mlir::vector;

namespace {
/// Progressive lowering of InterleaveOp.
class InterleaveOpLowering : public OpRewritePattern<vector::InterleaveOp> {
public:
using OpRewritePattern::OpRewritePattern;

LogicalResult matchAndRewrite(vector::InterleaveOp op,
PatternRewriter &rewriter) const override {
VectorType resultType = op.getResultVectorType();
// 1-D vector.interleave ops can be directly lowered to LLVM (later).
if (resultType.getRank() == 1)
return failure();

// Below we unroll the leading (or front) dimension. If that dimension is
// scalable we can't unroll it.
if (resultType.getScalableDims().front())
return failure();

// n-D case: Unroll the leading dimension.
auto loc = op.getLoc();
Value result = rewriter.create<arith::ConstantOp>(
loc, resultType, rewriter.getZeroAttr(resultType));
for (int idx = 0, end = resultType.getDimSize(0); idx < end; ++idx) {
Value extractLhs = rewriter.create<ExtractOp>(loc, op.getLhs(), idx);
Value extractRhs = rewriter.create<ExtractOp>(loc, op.getRhs(), idx);
Value interleave =
rewriter.create<InterleaveOp>(loc, extractLhs, extractRhs);
result = rewriter.create<InsertOp>(loc, interleave, result, idx);
}

rewriter.replaceOp(op, result);
return success();
}
};

} // namespace

void mlir::vector::populateVectorInterleaveLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<InterleaveOpLowering>(patterns.getContext(), benefit);
}
85 changes: 85 additions & 0 deletions mlir/test/Conversion/VectorToLLVM/vector-to-llvm.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -2460,3 +2460,88 @@ func.func @make_fixed_vector_of_scalable_vector(%f : f64) -> vector<3x[2]xf64>
%res = vector.broadcast %f : f64 to vector<3x[2]xf64>
return %res : vector<3x[2]xf64>
}

// -----

// CHECK-LABEL: @vector_interleave_0d
// CHECK-SAME: %[[LHS:.*]]: vector<i8>, %[[RHS:.*]]: vector<i8>)
func.func @vector_interleave_0d(%a: vector<i8>, %b: vector<i8>) -> vector<2xi8> {
// CHECK: %[[LHS_RANK1:.*]] = builtin.unrealized_conversion_cast %[[LHS]] : vector<i8> to vector<1xi8>
// CHECK: %[[RHS_RANK1:.*]] = builtin.unrealized_conversion_cast %[[RHS]] : vector<i8> to vector<1xi8>
// CHECK: %[[ZIP:.*]] = llvm.shufflevector %[[LHS_RANK1]], %[[RHS_RANK1]] [0, 1] : vector<1xi8>
// CHECK: return %[[ZIP]]
%0 = vector.interleave %a, %b : vector<i8>
return %0 : vector<2xi8>
}

// -----

// CHECK-LABEL: @vector_interleave_1d
// CHECK-SAME: %[[LHS:.*]]: vector<8xf32>, %[[RHS:.*]]: vector<8xf32>)
func.func @vector_interleave_1d(%a: vector<8xf32>, %b: vector<8xf32>) -> vector<16xf32>
{
// CHECK: %[[ZIP:.*]] = llvm.shufflevector %[[LHS]], %[[RHS]] [0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15] : vector<8xf32>
// CHECK: return %[[ZIP]]
%0 = vector.interleave %a, %b : vector<8xf32>
return %0 : vector<16xf32>
}

// -----

// CHECK-LABEL: @vector_interleave_1d_scalable
// CHECK-SAME: %[[LHS:.*]]: vector<[4]xi32>, %[[RHS:.*]]: vector<[4]xi32>)
func.func @vector_interleave_1d_scalable(%a: vector<[4]xi32>, %b: vector<[4]xi32>) -> vector<[8]xi32>
{
// CHECK: %[[ZIP:.*]] = "llvm.intr.experimental.vector.interleave2"(%[[LHS]], %[[RHS]]) : (vector<[4]xi32>, vector<[4]xi32>) -> vector<[8]xi32>
// CHECK: return %[[ZIP]]
%0 = vector.interleave %a, %b : vector<[4]xi32>
return %0 : vector<[8]xi32>
}

// -----

// CHECK-LABEL: @vector_interleave_2d
// CHECK-SAME: %[[LHS:.*]]: vector<2x3xi8>, %[[RHS:.*]]: vector<2x3xi8>)
func.func @vector_interleave_2d(%a: vector<2x3xi8>, %b: vector<2x3xi8>) -> vector<2x6xi8>
{
// CHECK: %[[LHS_LLVM:.*]] = builtin.unrealized_conversion_cast %[[LHS]] : vector<2x3xi8> to !llvm.array<2 x vector<3xi8>>
// CHECK: %[[RHS_LLVM:.*]] = builtin.unrealized_conversion_cast %[[RHS]] : vector<2x3xi8> to !llvm.array<2 x vector<3xi8>>
// CHECK: %[[CST:.*]] = arith.constant dense<0> : vector<2x6xi8>
// CHECK: %[[CST_LLVM:.*]] = builtin.unrealized_conversion_cast %[[CST]] : vector<2x6xi8> to !llvm.array<2 x vector<6xi8>>
// CHECK: %[[LHS_DIM_0:.*]] = llvm.extractvalue %[[LHS_LLVM]][0] : !llvm.array<2 x vector<3xi8>>
// CHECK: %[[RHS_DIM_0:.*]] = llvm.extractvalue %[[RHS_LLVM]][0] : !llvm.array<2 x vector<3xi8>>
// CHECK: %[[ZIM_DIM_0:.*]] = llvm.shufflevector %[[LHS_DIM_0]], %[[RHS_DIM_0]] [0, 3, 1, 4, 2, 5] : vector<3xi8>
// CHECK: %[[RES_0:.*]] = llvm.insertvalue %[[ZIM_DIM_0]], %[[CST_LLVM]][0] : !llvm.array<2 x vector<6xi8>>
// CHECK: %[[LHS_DIM_1:.*]] = llvm.extractvalue %[[LHS_LLVM]][1] : !llvm.array<2 x vector<3xi8>>
// CHECK: %[[RHS_DIM_1:.*]] = llvm.extractvalue %[[RHS_LLVM]][1] : !llvm.array<2 x vector<3xi8>>
// CHECK: %[[ZIM_DIM_1:.*]] = llvm.shufflevector %[[LHS_DIM_1]], %[[RHS_DIM_1]] [0, 3, 1, 4, 2, 5] : vector<3xi8>
// CHECK: %[[RES_1:.*]] = llvm.insertvalue %[[ZIM_DIM_1]], %[[RES_0]][1] : !llvm.array<2 x vector<6xi8>>
// CHECK: %[[RES:.*]] = builtin.unrealized_conversion_cast %[[RES_1]] : !llvm.array<2 x vector<6xi8>> to vector<2x6xi8>
// CHECK: return %[[RES]]
%0 = vector.interleave %a, %b : vector<2x3xi8>
return %0 : vector<2x6xi8>
}

// -----

// CHECK-LABEL: @vector_interleave_2d_scalable
// CHECK-SAME: %[[LHS:.*]]: vector<2x[8]xi16>, %[[RHS:.*]]: vector<2x[8]xi16>)
func.func @vector_interleave_2d_scalable(%a: vector<2x[8]xi16>, %b: vector<2x[8]xi16>) -> vector<2x[16]xi16>
{
// CHECK: %[[LHS_LLVM:.*]] = builtin.unrealized_conversion_cast %arg0 : vector<2x[8]xi16> to !llvm.array<2 x vector<[8]xi16>>
// CHECK: %[[RHS_LLVM:.*]] = builtin.unrealized_conversion_cast %arg1 : vector<2x[8]xi16> to !llvm.array<2 x vector<[8]xi16>>
// CHECK: %[[CST:.*]] = arith.constant dense<0> : vector<2x[16]xi16>
// CHECK: %[[CST_LLVM:.*]] = builtin.unrealized_conversion_cast %[[CST]] : vector<2x[16]xi16> to !llvm.array<2 x vector<[16]xi16>>
// CHECK: %[[LHS_DIM_0:.*]] = llvm.extractvalue %[[LHS_LLVM]][0] : !llvm.array<2 x vector<[8]xi16>>
// CHECK: %[[RHS_DIM_0:.*]] = llvm.extractvalue %[[RHS_LLVM]][0] : !llvm.array<2 x vector<[8]xi16>>
// CHECK: %[[ZIM_DIM_0:.*]] = "llvm.intr.experimental.vector.interleave2"(%[[LHS_DIM_0]], %[[RHS_DIM_0]]) : (vector<[8]xi16>, vector<[8]xi16>) -> vector<[16]xi16>
// CHECK: %[[RES_0:.*]] = llvm.insertvalue %[[ZIM_DIM_0]], %[[CST_LLVM]][0] : !llvm.array<2 x vector<[16]xi16>>
// CHECK: %[[LHS_DIM_1:.*]] = llvm.extractvalue %0[1] : !llvm.array<2 x vector<[8]xi16>>
// CHECK: %[[RHS_DIM_1:.*]] = llvm.extractvalue %1[1] : !llvm.array<2 x vector<[8]xi16>>
// CHECK: %[[ZIP_DIM_1:.*]] = "llvm.intr.experimental.vector.interleave2"(%[[LHS_DIM_1]], %[[RHS_DIM_1]]) : (vector<[8]xi16>, vector<[8]xi16>) -> vector<[16]xi16>
// CHECK: %[[RES_1:.*]] = llvm.insertvalue %[[ZIP_DIM_1]], %[[RES_0]][1] : !llvm.array<2 x vector<[16]xi16>>
// CHECK: %[[RES:.*]] = builtin.unrealized_conversion_cast %[[RES_1]] : !llvm.array<2 x vector<[16]xi16>> to vector<2x[16]xi16>
// CHECK: return %[[RES]]
%0 = vector.interleave %a, %b : vector<2x[8]xi16>
return %0 : vector<2x[16]xi16>
}
23 changes: 23 additions & 0 deletions mlir/test/Dialect/Vector/canonicalize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -2567,3 +2567,26 @@ func.func @load_store_forwarding_rank_mismatch(%v0: vector<4x1x1xf32>, %arg0: te
tensor<4x4x4xf32>, vector<1x100x4x5xf32>
return %r : vector<1x100x4x5xf32>
}

// -----

// CHECK-LABEL: func.func @rank_0_shuffle_to_interleave(
// CHECK-SAME: %[[LHS:.*]]: vector<f64>, %[[RHS:.*]]: vector<f64>)
func.func @rank_0_shuffle_to_interleave(%arg0: vector<f64>, %arg1: vector<f64>) -> vector<2xf64>
{
// CHECK: %[[ZIP:.*]] = vector.interleave %[[LHS]], %[[RHS]] : vector<f64>
// CHECK: return %[[ZIP]]
%0 = vector.shuffle %arg0, %arg1 [0, 1] : vector<f64>, vector<f64>
return %0 : vector<2xf64>
}

// -----

// CHECK-LABEL: func.func @rank_1_shuffle_to_interleave(
// CHECK-SAME: %[[LHS:.*]]: vector<6xi32>, %[[RHS:.*]]: vector<6xi32>)
func.func @rank_1_shuffle_to_interleave(%arg0: vector<6xi32>, %arg1: vector<6xi32>) -> vector<12xi32> {
// CHECK: %[[ZIP:.*]] = vector.interleave %[[LHS]], %[[RHS]] : vector<6xi32>
// CHECK: return %[[ZIP]]
%0 = vector.shuffle %arg0, %arg1 [0, 6, 1, 7, 2, 8, 3, 9, 4, 10, 5, 11] : vector<6xi32>, vector<6xi32>
return %0 : vector<12xi32>
}
Loading