Skip to content

[mlir][sparse] support sparse dilated convolution. #80470

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 2, 2024

Conversation

PeimingLiu
Copy link
Member

No description provided.

@llvmbot
Copy link
Member

llvmbot commented Feb 2, 2024

@llvm/pr-subscribers-mlir-sparse

@llvm/pr-subscribers-mlir

Author: Peiming Liu (PeimingLiu)

Changes

Full diff: https://github.com/llvm/llvm-project/pull/80470.diff

4 Files Affected:

  • (modified) mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.cpp (+2-2)
  • (modified) mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.cpp (+18-23)
  • (modified) mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.h (+3-2)
  • (added) mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_dilated_conv_2d_nhwc_hwcf.mlir (+148)
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.cpp
index 70488c34e440c..a8aa8d8f01797 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.cpp
@@ -321,8 +321,8 @@ void LoopEmitter::initSubSectIterator(OpBuilder &builder, Location loc) {
       } else {
         Value size = loopHighs[loop];
         const SparseIterator &subSectIter = *iters[t][lvl].back();
-        it = makeTraverseSubSectIterator(subSectIter, *parent, std::move(lvlIt),
-                                         size, curDep.second);
+        it = makeTraverseSubSectIterator(builder, loc, subSectIter, *parent,
+                                         std::move(lvlIt), size, curDep.second);
       }
       lastIter[t] = it.get();
       iters[t][lvl].emplace_back(std::move(it));
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.cpp
index c1fc2a062fa10..47aa2fcaa6ae5 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.cpp
@@ -665,13 +665,11 @@ class SubSectIterator : public SparseIterator {
 public:
   SubSectIterator(const NonEmptySubSectIterator &subSect,
                   const SparseIterator &parent,
-                  std::unique_ptr<SparseIterator> &&wrap, Value size,
-                  unsigned stride)
+                  std::unique_ptr<SparseIterator> &&wrap, Value size)
       : SparseIterator(IterKind::kSubSect, *wrap,
                        /*extraCursorCnt=*/wrap->randomAccessible() ? 0 : 1),
         subSect(subSect), wrap(std::move(wrap)), parent(parent), size(size),
-        stride(stride), helper(*this) {
-    assert(stride == 1 && "Not implemented.");
+        helper(*this) {
     assert(subSect.tid == tid && subSect.lvl == lvl);
     assert(parent.kind != IterKind::kSubSect || parent.lvl + 1 == lvl);
   };
@@ -766,8 +764,6 @@ class SubSectIterator : public SparseIterator {
   const SparseIterator &parent;
 
   Value size;
-  unsigned stride;
-
   SubSectIterHelper helper;
 };
 
@@ -1330,29 +1326,19 @@ sparse_tensor::makeSlicedLevelIterator(std::unique_ptr<SparseIterator> &&sit,
   return std::make_unique<FilterIterator>(std::move(sit), offset, stride, size);
 }
 
-template <typename IterType>
 static const SparseIterator *tryUnwrapFilter(const SparseIterator *it) {
   auto *filter = llvm::dyn_cast_or_null<FilterIterator>(it);
-  if (filter && llvm::isa<IterType>(filter->wrap.get())) {
+  if (filter)
     return filter->wrap.get();
-  }
   return it;
 }
-template <typename IterType>
-static const IterType *unwrapFilter(const SparseIterator *it) {
-  auto *filter = llvm::dyn_cast_or_null<FilterIterator>(it);
-  if (filter) {
-    return llvm::cast<IterType>(filter->wrap.get());
-  }
-  return llvm::cast<IterType>(it);
-}
 
 std::unique_ptr<SparseIterator> sparse_tensor::makeNonEmptySubSectIterator(
     OpBuilder &b, Location l, const SparseIterator *parent, Value loopBound,
     std::unique_ptr<SparseIterator> &&delegate, Value size, unsigned stride) {
 
   // Try unwrap the NonEmptySubSectIterator from a filter parent.
-  parent = tryUnwrapFilter<NonEmptySubSectIterator>(parent);
+  parent = tryUnwrapFilter(parent);
   auto it = std::make_unique<NonEmptySubSectIterator>(
       b, l, parent, std::move(delegate), size);
 
@@ -1366,12 +1352,21 @@ std::unique_ptr<SparseIterator> sparse_tensor::makeNonEmptySubSectIterator(
 }
 
 std::unique_ptr<SparseIterator> sparse_tensor::makeTraverseSubSectIterator(
-    const SparseIterator &subSectIter, const SparseIterator &parent,
-    std::unique_ptr<SparseIterator> &&wrap, Value size, unsigned stride) {
+    OpBuilder &b, Location l, const SparseIterator &subSectIter,
+    const SparseIterator &parent, std::unique_ptr<SparseIterator> &&wrap,
+    Value size, unsigned stride) {
+
   // This must be a subsection iterator or a filtered subsection iterator.
-  auto &subSect = *unwrapFilter<NonEmptySubSectIterator>(&subSectIter);
-  return std::make_unique<SubSectIterator>(subSect, parent, std::move(wrap),
-                                           size, stride);
+  auto &subSect =
+      llvm::cast<NonEmptySubSectIterator>(*tryUnwrapFilter(&subSectIter));
+
+  auto it = std::make_unique<SubSectIterator>(
+      subSect, *tryUnwrapFilter(&parent), std::move(wrap), size);
+  if (stride != 1) {
+    return std::make_unique<FilterIterator>(std::move(it), /*offset=*/C_IDX(0),
+                                            C_IDX(stride), /*size=*/size);
+  }
+  return it;
 }
 
 #undef CMPI
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.h b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.h
index 318530cda7632..d8bb7f81ac1f4 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.h
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.h
@@ -300,8 +300,9 @@ std::unique_ptr<SparseIterator> makeNonEmptySubSectIterator(
 /// Helper function to create a SparseIterator object that iterate over a
 /// non-empty subsection created by NonEmptySubSectIterator.
 std::unique_ptr<SparseIterator> makeTraverseSubSectIterator(
-    const SparseIterator &subsectIter, const SparseIterator &parent,
-    std::unique_ptr<SparseIterator> &&delegate, Value size, unsigned stride);
+    OpBuilder &b, Location l, const SparseIterator &subsectIter,
+    const SparseIterator &parent, std::unique_ptr<SparseIterator> &&delegate,
+    Value size, unsigned stride);
 
 } // namespace sparse_tensor
 } // namespace mlir
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_dilated_conv_2d_nhwc_hwcf.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_dilated_conv_2d_nhwc_hwcf.mlir
new file mode 100644
index 0000000000000..259250490732c
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_dilated_conv_2d_nhwc_hwcf.mlir
@@ -0,0 +1,148 @@
+//--------------------------------------------------------------------------------------------------
+// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
+//
+// Set-up that's shared across all tests in this directory. In principle, this
+// config could be moved to lit.local.cfg. However, there are downstream users that
+//  do not use these LIT config files. Hence why this is kept inline.
+//
+// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
+// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
+// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
+// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
+// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
+// DEFINE: %{run_opts} = -e entry -entry-point-result=void
+// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
+// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
+//
+// DEFINE: %{env} =
+//--------------------------------------------------------------------------------------------------
+
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation.
+// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation and vectorization.
+// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation and VLA vectorization.
+// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
+
+#CCCC = #sparse_tensor.encoding<{
+  map = (d0, d1, d2, d3) -> (d0 : compressed, d1 : compressed, d2 : compressed, d3 : compressed)
+}>
+
+#CDCC = #sparse_tensor.encoding<{
+  map = (d0, d1, d2, d3) -> (d0 : compressed, d1 : dense, d2 : compressed, d3 : compressed)
+}>
+
+// Creates and returns 4-D buffer of size (%s1, %s2, %s3, %s4) filled with the value %f
+func.func @alloc_4d_filled_f32(%s1 : index, %s2 : index, %s3 : index, %s4 : index, %f : f32) -> tensor<?x?x?x?xf32> {
+  %buf = tensor.empty(%s1, %s2, %s3, %s4) : tensor<?x?x?x?xf32>
+  %ret = linalg.fill ins(%f : f32) outs(%buf : tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
+  return %ret : tensor<?x?x?x?xf32>
+}
+
+func.func @conv_2d_nhwc_hwcf(%arg0: tensor<?x?x?x?xf32>, %arg1: tensor<?x?x?x?xf32>, %arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> {
+  %ret = linalg.conv_2d_nhwc_hwcf {dilations = dense<2> : tensor<2xi64>,
+                                     strides = dense<1> : tensor<2xi64>}
+     ins (%arg0, %arg1: tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>)
+    outs (%arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
+  return %ret : tensor<?x?x?x?xf32>
+}
+
+func.func @conv_2d_nhwc_hwcf_CCCC(%arg0: tensor<?x?x?x?xf32, #CCCC>, %arg1: tensor<?x?x?x?xf32>, %arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> {
+  %ret = linalg.conv_2d_nhwc_hwcf {dilations = dense<2> : tensor<2xi64>,
+                                     strides = dense<1> : tensor<2xi64>}
+     ins (%arg0, %arg1: tensor<?x?x?x?xf32, #CCCC>, tensor<?x?x?x?xf32>)
+    outs (%arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
+  return %ret : tensor<?x?x?x?xf32>
+}
+
+func.func @conv_2d_nhwc_hwcf_CDCC(%arg0: tensor<?x?x?x?xf32, #CDCC>, %arg1: tensor<?x?x?x?xf32>, %arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> {
+  %ret = linalg.conv_2d_nhwc_hwcf {dilations = dense<2> : tensor<2xi64>,
+                                     strides = dense<1> : tensor<2xi64>}
+     ins (%arg0, %arg1: tensor<?x?x?x?xf32, #CDCC>, tensor<?x?x?x?xf32>)
+    outs (%arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
+  return %ret : tensor<?x?x?x?xf32>
+}
+
+func.func @conv_2d_nhwc_hwcf_dual_CDCC(%arg0: tensor<?x?x?x?xf32, #CDCC>, %arg1: tensor<?x?x?x?xf32, #CDCC>, %arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> {
+  %ret = linalg.conv_2d_nhwc_hwcf {dilations = dense<2> : tensor<2xi64>,
+                                     strides = dense<1> : tensor<2xi64>}
+     ins (%arg0, %arg1: tensor<?x?x?x?xf32, #CDCC>, tensor<?x?x?x?xf32, #CDCC>)
+    outs (%arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
+  return %ret : tensor<?x?x?x?xf32>
+}
+
+
+func.func @entry() {
+  %c0 = arith.constant 0 : index
+  %c1 = arith.constant 1 : index
+  %c3 = arith.constant 3 : index
+  %c5 = arith.constant 5 : index
+  %c6 = arith.constant 6 : index
+  %c7 = arith.constant 7 : index
+  %f10 = arith.constant 10.00000e+00 : f32
+  %val = arith.constant 2.00000e+00 : f32
+  %zero = arith.constant 0.00000e+00 : f32
+
+  %filter2D_nhwc = call @alloc_4d_filled_f32(%c3, %c3, %c3, %c1, %val) :(index, index, index, index, f32) -> (tensor<?x?x?x?xf32>)
+  %in2D_tmp = call @alloc_4d_filled_f32(%c3, %c7, %c7, %c3, %zero) : (index, index, index, index, f32) -> (tensor<?x?x?x?xf32>)
+  %in2D_nhwc = tensor.insert %f10 into %in2D_tmp[%c0, %c1, %c1, %c0] : tensor<?x?x?x?xf32>
+  %out2D_nhwc = call @alloc_4d_filled_f32(%c3, %c3, %c3, %c1, %zero) : (index, index, index, index, f32) -> (tensor<?x?x?x?xf32>)
+
+  %in2D_nhwc_CCCC = sparse_tensor.convert %in2D_nhwc
+    : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32, #CCCC>
+  %filter2D_nhwc_CDCC = sparse_tensor.convert %filter2D_nhwc
+    : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32, #CDCC>
+  %in2D_nhwc_CDCC = sparse_tensor.convert %in2D_nhwc
+    : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32, #CDCC>
+
+  %dense_ret = call @conv_2d_nhwc_hwcf(%in2D_nhwc, %filter2D_nhwc, %out2D_nhwc) : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) -> (tensor<?x?x?x?xf32>)
+  %CCCC_ret = call @conv_2d_nhwc_hwcf_CCCC(%in2D_nhwc_CCCC, %filter2D_nhwc, %out2D_nhwc) : (tensor<?x?x?x?xf32, #CCCC>, tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) -> (tensor<?x?x?x?xf32>)
+  %CDCC_ret = call @conv_2d_nhwc_hwcf_CDCC(%in2D_nhwc_CDCC, %filter2D_nhwc, %out2D_nhwc) : (tensor<?x?x?x?xf32, #CDCC>, tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) -> (tensor<?x?x?x?xf32>)
+
+  %dual_CDCC_ret = call @conv_2d_nhwc_hwcf_dual_CDCC(%in2D_nhwc_CDCC, %filter2D_nhwc_CDCC, %out2D_nhwc)
+    : (tensor<?x?x?x?xf32, #CDCC>, tensor<?x?x?x?xf32, #CDCC>, tensor<?x?x?x?xf32>) -> (tensor<?x?x?x?xf32>)
+
+  // CHECK:      ( ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 20 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ),
+  // CHECK-SAME:   ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ),
+  // CHECK-SAME:   ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ) )
+  %dense_v = vector.transfer_read %dense_ret[%c0, %c0, %c0, %c0], %zero
+      : tensor<?x?x?x?xf32>, vector<3x3x3x1xf32>
+  vector.print %dense_v : vector<3x3x3x1xf32>
+
+  // CHECK-NEXT: ( ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 20 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ),
+  // CHECK-SAME:   ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ),
+  // CHECK-SAME:   ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ) )
+  %v_dual = vector.transfer_read %dual_CDCC_ret[%c0, %c0, %c0, %c0], %zero
+      : tensor<?x?x?x?xf32>, vector<3x3x3x1xf32>
+  vector.print %v_dual : vector<3x3x3x1xf32>
+
+  // CHECK-NEXT: ( ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 20 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ),
+  // CHECK-SAME:   ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ),
+  // CHECK-SAME:   ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ) )
+  %v1 = vector.transfer_read %CCCC_ret[%c0, %c0, %c0, %c0], %zero
+      : tensor<?x?x?x?xf32>, vector<3x3x3x1xf32>
+  vector.print %v1 : vector<3x3x3x1xf32>
+
+  // CHECK-NEXT: ( ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 20 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ),
+  // CHECK-SAME:   ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ),
+  // CHECK-SAME:   ( ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ), ( ( 0 ), ( 0 ), ( 0 ) ) ) )
+  %v2 = vector.transfer_read %CDCC_ret[%c0, %c0, %c0, %c0], %zero
+      : tensor<?x?x?x?xf32>, vector<3x3x3x1xf32>
+  vector.print %v1 : vector<3x3x3x1xf32>
+
+  // Free the resources
+  bufferization.dealloc_tensor %in2D_nhwc : tensor<?x?x?x?xf32>
+  bufferization.dealloc_tensor %filter2D_nhwc : tensor<?x?x?x?xf32>
+  bufferization.dealloc_tensor %out2D_nhwc : tensor<?x?x?x?xf32>
+
+  bufferization.dealloc_tensor %filter2D_nhwc_CDCC : tensor<?x?x?x?xf32, #CDCC>
+  bufferization.dealloc_tensor %in2D_nhwc_CCCC : tensor<?x?x?x?xf32, #CCCC>
+  bufferization.dealloc_tensor %in2D_nhwc_CDCC : tensor<?x?x?x?xf32, #CDCC>
+  return
+}

@PeimingLiu PeimingLiu merged commit 1ac6846 into llvm:main Feb 2, 2024
agozillon pushed a commit to agozillon/llvm-project that referenced this pull request Feb 5, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
mlir:sparse Sparse compiler in MLIR mlir
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants