-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][VectorOps] Add conversion of 1-D vector.interleave ops to LLVM (2/4) #80966
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
one minor comment, but otherwise LGTM, cheers
The 1-D case directly maps to LLVM intrinsics. The n-D case will be handled by unrolling to 1-D first (in a later patch).
c2047ad
to
c4725b1
Compare
@llvm/pr-subscribers-mlir Author: Benjamin Maxwell (MacDue) ChangesThe 1-D case directly maps to LLVM intrinsics. The n-D case will be Depends on: #80965 Full diff: https://github.com/llvm/llvm-project/pull/80966.diff 2 Files Affected:
diff --git a/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp b/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
index b66b55ae8d57ff..0d9a451d11ca87 100644
--- a/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
+++ b/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
@@ -1734,6 +1734,44 @@ struct VectorSplatNdOpLowering : public ConvertOpToLLVMPattern<SplatOp> {
}
};
+/// Conversion pattern for a `vector.interleave`.
+/// This supports fixed-sized vectors and scalable vectors.
+struct VectorInterleaveOpLowering
+ : public ConvertOpToLLVMPattern<vector::InterleaveOp> {
+ using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
+
+ LogicalResult
+ matchAndRewrite(vector::InterleaveOp interleaveOp, OpAdaptor adaptor,
+ ConversionPatternRewriter &rewriter) const override {
+ VectorType resultType = interleaveOp.getResultVectorType();
+ // n-D interleaves should have been lowered already.
+ if (resultType.getRank() != 1)
+ return failure();
+ // If the result is rank 1, then this directly maps to LLVM.
+ if (resultType.isScalable()) {
+ rewriter.replaceOpWithNewOp<LLVM::experimental_vector_interleave2>(
+ interleaveOp, typeConverter->convertType(resultType),
+ adaptor.getLhs(), adaptor.getRhs());
+ return success();
+ }
+ // Lower fixed-size interleaves to a shufflevector. While the
+ // vector.interleave2 intrinsic supports fixed and scalable vectors, the
+ // langref still recommends fixed-vectors use shufflevector, see:
+ // https://llvm.org/docs/LangRef.html#id876.
+ int64_t resultVectorSize = resultType.getNumElements();
+ SmallVector<int32_t> interleaveShuffleMask;
+ interleaveShuffleMask.reserve(resultVectorSize);
+ for (int i = 0, end = resultVectorSize / 2; i < end; ++i) {
+ interleaveShuffleMask.push_back(i);
+ interleaveShuffleMask.push_back((resultVectorSize / 2) + i);
+ }
+ rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(
+ interleaveOp, adaptor.getLhs(), adaptor.getRhs(),
+ interleaveShuffleMask);
+ return success();
+ }
+};
+
} // namespace
/// Populate the given list with patterns that convert from Vector to LLVM.
@@ -1758,7 +1796,8 @@ void mlir::populateVectorToLLVMConversionPatterns(
VectorExpandLoadOpConversion, VectorCompressStoreOpConversion,
VectorSplatOpLowering, VectorSplatNdOpLowering,
VectorScalableInsertOpLowering, VectorScalableExtractOpLowering,
- MaskedReductionOpConversion>(converter);
+ MaskedReductionOpConversion, VectorInterleaveOpLowering>(
+ converter);
// Transfer ops with rank > 1 are handled by VectorToSCF.
populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1);
}
diff --git a/mlir/test/Conversion/VectorToLLVM/vector-to-llvm.mlir b/mlir/test/Conversion/VectorToLLVM/vector-to-llvm.mlir
index 1c13b16dfd9af3..a46f2e101f3c35 100644
--- a/mlir/test/Conversion/VectorToLLVM/vector-to-llvm.mlir
+++ b/mlir/test/Conversion/VectorToLLVM/vector-to-llvm.mlir
@@ -2460,3 +2460,40 @@ func.func @make_fixed_vector_of_scalable_vector(%f : f64) -> vector<3x[2]xf64>
%res = vector.broadcast %f : f64 to vector<3x[2]xf64>
return %res : vector<3x[2]xf64>
}
+
+// -----
+
+// CHECK-LABEL: @vector_interleave_0d
+// CHECK-SAME: %[[LHS:.*]]: vector<i8>, %[[RHS:.*]]: vector<i8>)
+func.func @vector_interleave_0d(%a: vector<i8>, %b: vector<i8>) -> vector<2xi8> {
+ // CHECK: %[[LHS_RANK1:.*]] = builtin.unrealized_conversion_cast %[[LHS]] : vector<i8> to vector<1xi8>
+ // CHECK: %[[RHS_RANK1:.*]] = builtin.unrealized_conversion_cast %[[RHS]] : vector<i8> to vector<1xi8>
+ // CHECK: %[[ZIP:.*]] = llvm.shufflevector %[[LHS_RANK1]], %[[RHS_RANK1]] [0, 1] : vector<1xi8>
+ // CHECK: return %[[ZIP]]
+ %0 = vector.interleave %a, %b : vector<i8>
+ return %0 : vector<2xi8>
+}
+
+// -----
+
+// CHECK-LABEL: @vector_interleave_1d
+// CHECK-SAME: %[[LHS:.*]]: vector<8xf32>, %[[RHS:.*]]: vector<8xf32>)
+func.func @vector_interleave_1d(%a: vector<8xf32>, %b: vector<8xf32>) -> vector<16xf32>
+{
+ // CHECK: %[[ZIP:.*]] = llvm.shufflevector %[[LHS]], %[[RHS]] [0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15] : vector<8xf32>
+ // CHECK: return %[[ZIP]]
+ %0 = vector.interleave %a, %b : vector<8xf32>
+ return %0 : vector<16xf32>
+}
+
+// -----
+
+// CHECK-LABEL: @vector_interleave_1d_scalable
+// CHECK-SAME: %[[LHS:.*]]: vector<[4]xi32>, %[[RHS:.*]]: vector<[4]xi32>)
+func.func @vector_interleave_1d_scalable(%a: vector<[4]xi32>, %b: vector<[4]xi32>) -> vector<[8]xi32>
+{
+ // CHECK: %[[ZIP:.*]] = "llvm.intr.experimental.vector.interleave2"(%[[LHS]], %[[RHS]]) : (vector<[4]xi32>, vector<[4]xi32>) -> vector<[8]xi32>
+ // CHECK: return %[[ZIP]]
+ %0 = vector.interleave %a, %b : vector<[4]xi32>
+ return %0 : vector<[8]xi32>
+}
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
This unrolls n-D vector.interleave ops like: ```mlir vector.interleave %i, %j : vector<6x3xf32> ``` To a sequence of 1-D operations: ```mlir %i_0 = vector.extract %i[0] %j_0 = vector.extract %j[0] %res_0 = vector.interleave %i_0, %j_0 : vector<3xf32> vector.insert %res_0, %result[0] : // ... repeated x6 ``` The 1-D operations can then be directly lowered to LLVM. Depends on: #80966
…0967) This unrolls n-D vector.interleave ops like: ```mlir vector.interleave %i, %j : vector<6x3xf32> ``` To a sequence of 1-D operations: ```mlir %i_0 = vector.extract %i[0] %j_0 = vector.extract %j[0] %res_0 = vector.interleave %i_0, %j_0 : vector<3xf32> vector.insert %res_0, %result[0] : // ... repeated x6 ``` The 1-D operations can then be directly lowered to LLVM. Depends on: llvm#80966
The 1-D case directly maps to LLVM intrinsics. The n-D case will be
handled by unrolling to 1-D first (in a later patch).
Depends on: #80965