-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][sparse] using non-static field to avoid data races. #81165
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-sparse Author: Peiming Liu (PeimingLiu) ChangesFull diff: https://github.com/llvm/llvm-project/pull/81165.diff 4 Files Affected:
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.cpp
index 1c2857d868a60..0ead135c90d30 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.cpp
@@ -94,7 +94,7 @@ void LoopEmitter::initialize(ValueRange ts, StringAttr loopTag, bool hasOutput,
this->loopTag = loopTag;
this->hasOutput = hasOutput;
this->isSparseOut = isSparseOut;
- SparseIterator::setSparseEmitStrategy(emitStrategy);
+ this->emitStrategy = emitStrategy;
const unsigned numManifestTensors = ts.size();
const unsigned synTensorId = numManifestTensors;
@@ -166,13 +166,13 @@ void LoopEmitter::initialize(ValueRange ts, StringAttr loopTag, bool hasOutput,
std::unique_ptr<SparseIterator>
LoopEmitter::makeLevelIterator(OpBuilder &builder, Location loc, TensorId t,
Level l) {
- auto it = makeSimpleIterator(*lvls[t][l]);
+ auto it = makeSimpleIterator(*lvls[t][l], emitStrategy);
auto stt = getSparseTensorType(tensors[t]);
if (stt.hasEncoding() && stt.getEncoding().isSlice()) {
Value offset = genSliceOffset(builder, loc, tensors[t], l);
Value stride = genSliceStride(builder, loc, tensors[t], l);
- auto slicedIt = makeSlicedLevelIterator(std::move(it), offset, stride,
- lvls[t][l]->getSize());
+ auto slicedIt = makeSlicedLevelIterator(
+ std::move(it), offset, stride, lvls[t][l]->getSize(), emitStrategy);
return slicedIt;
}
return it;
@@ -186,7 +186,7 @@ void LoopEmitter::initializeLoopEmit(
TensorId synId = getSynTensorId();
for (unsigned i = 0, e = loopHighs.size(); i < e; i++) {
Value sz = loopHighs[i] = synSetter(builder, loc, i);
- auto [stl, it] = makeSynLevelAndIterator(sz, synId, i);
+ auto [stl, it] = makeSynLevelAndIterator(sz, synId, i, emitStrategy);
lvls[synId][i] = std::move(stl);
iters[synId][i].emplace_back(std::move(it));
}
@@ -317,12 +317,13 @@ void LoopEmitter::initSubSectIterator(OpBuilder &builder, Location loc) {
size = ADDI(size, ADDI(MULI(idxMax, C_IDX(stride)), C_IDX(1)));
}
it = makeNonEmptySubSectIterator(builder, loc, parent, loopHighs[loop],
- std::move(lvlIt), size, curDep.second);
+ std::move(lvlIt), size, curDep.second,
+ emitStrategy);
} else {
const SparseIterator &subSectIter = *iters[t][lvl].back();
it = makeTraverseSubSectIterator(builder, loc, subSectIter, *parent,
std::move(lvlIt), loopHighs[loop],
- curDep.second);
+ curDep.second, emitStrategy);
}
lastIter[t] = it.get();
iters[t][lvl].emplace_back(std::move(it));
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.h b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.h
index 5bab2c6a86081..7bfe713cdd9f7 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.h
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/LoopEmitter.h
@@ -380,6 +380,7 @@ class LoopEmitter {
/// tensor.
bool hasOutput;
bool isSparseOut;
+ SparseEmitStrategy emitStrategy;
//
// Fields which have `numTensor` many entries.
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.cpp
index 04b49c320f07a..4ba9ecbe03c72 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.cpp
@@ -773,9 +773,6 @@ class SubSectIterator : public SparseIterator {
// SparseIterator derived classes implementation.
//===----------------------------------------------------------------------===//
-SparseEmitStrategy SparseIterator::emitStrategy =
- SparseEmitStrategy::kFunctional;
-
void SparseIterator::genInit(OpBuilder &b, Location l,
const SparseIterator *p) {
if (emitStrategy == SparseEmitStrategy::kDebugInterface) {
@@ -1303,27 +1300,38 @@ sparse_tensor::makeSparseTensorLevel(OpBuilder &b, Location l, Value t,
}
std::pair<std::unique_ptr<SparseTensorLevel>, std::unique_ptr<SparseIterator>>
-sparse_tensor::makeSynLevelAndIterator(Value sz, unsigned tid, unsigned lvl) {
+sparse_tensor::makeSynLevelAndIterator(Value sz, unsigned tid, unsigned lvl,
+ SparseEmitStrategy strategy) {
auto stl = std::make_unique<DenseLevel>(tid, lvl, sz, /*encoded=*/false);
auto it = std::make_unique<TrivialIterator>(*stl);
+ it->setSparseEmitStrategy(strategy);
return std::make_pair(std::move(stl), std::move(it));
}
std::unique_ptr<SparseIterator>
-sparse_tensor::makeSimpleIterator(const SparseTensorLevel &stl) {
+sparse_tensor::makeSimpleIterator(const SparseTensorLevel &stl,
+ SparseEmitStrategy strategy) {
+ std::unique_ptr<SparseIterator> ret;
if (!isUniqueLT(stl.getLT())) {
// We always dedupliate the non-unique level, but we should optimize it away
// if possible.
- return std::make_unique<DedupIterator>(stl);
+ ret = std::make_unique<DedupIterator>(stl);
+ } else {
+ ret = std::make_unique<TrivialIterator>(stl);
}
- return std::make_unique<TrivialIterator>(stl);
+ ret->setSparseEmitStrategy(strategy);
+ return ret;
}
std::unique_ptr<SparseIterator>
sparse_tensor::makeSlicedLevelIterator(std::unique_ptr<SparseIterator> &&sit,
- Value offset, Value stride, Value size) {
+ Value offset, Value stride, Value size,
+ SparseEmitStrategy strategy) {
- return std::make_unique<FilterIterator>(std::move(sit), offset, stride, size);
+ auto ret =
+ std::make_unique<FilterIterator>(std::move(sit), offset, stride, size);
+ ret->setSparseEmitStrategy(strategy);
+ return ret;
}
static const SparseIterator *tryUnwrapFilter(const SparseIterator *it) {
@@ -1335,38 +1343,42 @@ static const SparseIterator *tryUnwrapFilter(const SparseIterator *it) {
std::unique_ptr<SparseIterator> sparse_tensor::makeNonEmptySubSectIterator(
OpBuilder &b, Location l, const SparseIterator *parent, Value loopBound,
- std::unique_ptr<SparseIterator> &&delegate, Value size, unsigned stride) {
+ std::unique_ptr<SparseIterator> &&delegate, Value size, unsigned stride,
+ SparseEmitStrategy strategy) {
// Try unwrap the NonEmptySubSectIterator from a filter parent.
parent = tryUnwrapFilter(parent);
- auto it = std::make_unique<NonEmptySubSectIterator>(
- b, l, parent, std::move(delegate), size);
+ std::unique_ptr<SparseIterator> it =
+ std::make_unique<NonEmptySubSectIterator>(b, l, parent,
+ std::move(delegate), size);
if (stride != 1) {
// TODO: We can safely skip bound checking on sparse levels, but for dense
// iteration space, we need the bound to infer the dense loop range.
- return std::make_unique<FilterIterator>(std::move(it), /*offset=*/C_IDX(0),
- C_IDX(stride), /*size=*/loopBound);
+ it = std::make_unique<FilterIterator>(std::move(it), /*offset=*/C_IDX(0),
+ C_IDX(stride), /*size=*/loopBound);
}
+ it->setSparseEmitStrategy(strategy);
return it;
}
std::unique_ptr<SparseIterator> sparse_tensor::makeTraverseSubSectIterator(
OpBuilder &b, Location l, const SparseIterator &subSectIter,
const SparseIterator &parent, std::unique_ptr<SparseIterator> &&wrap,
- Value loopBound, unsigned stride) {
+ Value loopBound, unsigned stride, SparseEmitStrategy strategy) {
// This must be a subsection iterator or a filtered subsection iterator.
auto &subSect =
llvm::cast<NonEmptySubSectIterator>(*tryUnwrapFilter(&subSectIter));
- auto it = std::make_unique<SubSectIterator>(
+ std::unique_ptr<SparseIterator> it = std::make_unique<SubSectIterator>(
subSect, *tryUnwrapFilter(&parent), std::move(wrap));
if (stride != 1) {
- return std::make_unique<FilterIterator>(std::move(it), /*offset=*/C_IDX(0),
- C_IDX(stride), /*size=*/loopBound);
+ it = std::make_unique<FilterIterator>(std::move(it), /*offset=*/C_IDX(0),
+ C_IDX(stride), /*size=*/loopBound);
}
+ it->setSparseEmitStrategy(strategy);
return it;
}
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.h b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.h
index fc2d9de66cfe7..d1e94b790bea6 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.h
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Utils/SparseTensorLevel.h
@@ -111,8 +111,8 @@ class SparseIterator {
public:
virtual ~SparseIterator() = default;
- static void setSparseEmitStrategy(SparseEmitStrategy strategy) {
- SparseIterator::emitStrategy = strategy;
+ void setSparseEmitStrategy(SparseEmitStrategy strategy) {
+ emitStrategy = strategy;
}
virtual std::string getDebugInterfacePrefix() const = 0;
@@ -248,7 +248,7 @@ class SparseIterator {
return ref.take_front(cursorValsCnt);
}
- static SparseEmitStrategy emitStrategy;
+ SparseEmitStrategy emitStrategy;
public:
const IterKind kind; // For LLVM-style RTTI.
@@ -277,32 +277,34 @@ std::unique_ptr<SparseTensorLevel> makeSparseTensorLevel(OpBuilder &builder,
/// Helper function to create a simple SparseIterator object that iterate over
/// the SparseTensorLevel.
-std::unique_ptr<SparseIterator>
-makeSimpleIterator(const SparseTensorLevel &stl);
+std::unique_ptr<SparseIterator> makeSimpleIterator(const SparseTensorLevel &stl,
+ SparseEmitStrategy strategy);
/// Helper function to create a synthetic SparseIterator object that iterate
/// over a dense space specified by [0,`sz`).
std::pair<std::unique_ptr<SparseTensorLevel>, std::unique_ptr<SparseIterator>>
-makeSynLevelAndIterator(Value sz, unsigned tid, unsigned lvl);
+makeSynLevelAndIterator(Value sz, unsigned tid, unsigned lvl,
+ SparseEmitStrategy strategy);
/// Helper function to create a SparseIterator object that iterate over a
/// sliced space, the orignal space (before slicing) is traversed by `sit`.
std::unique_ptr<SparseIterator>
makeSlicedLevelIterator(std::unique_ptr<SparseIterator> &&sit, Value offset,
- Value stride, Value size);
+ Value stride, Value size, SparseEmitStrategy strategy);
/// Helper function to create a SparseIterator object that iterate over the
/// non-empty subsections set.
std::unique_ptr<SparseIterator> makeNonEmptySubSectIterator(
OpBuilder &b, Location l, const SparseIterator *parent, Value loopBound,
- std::unique_ptr<SparseIterator> &&delegate, Value size, unsigned stride);
+ std::unique_ptr<SparseIterator> &&delegate, Value size, unsigned stride,
+ SparseEmitStrategy strategy);
/// Helper function to create a SparseIterator object that iterate over a
/// non-empty subsection created by NonEmptySubSectIterator.
std::unique_ptr<SparseIterator> makeTraverseSubSectIterator(
OpBuilder &b, Location l, const SparseIterator &subsectIter,
const SparseIterator &parent, std::unique_ptr<SparseIterator> &&wrap,
- Value loopBound, unsigned stride);
+ Value loopBound, unsigned stride, SparseEmitStrategy strategy);
} // namespace sparse_tensor
} // namespace mlir
|
yinying-lisa-li
approved these changes
Feb 8, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.