Skip to content

[mlir][tensor] Add support for tensor.unpack static shapes inference. #81702

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 59 additions & 0 deletions mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4229,6 +4229,40 @@ UnPackOp UnPackOp::createTransposedClone(OpBuilder &b, Location loc,
metadata.outerDimsPerm);
}

/// Returns true if the `srcShape` or `destShape` is different from the one in
/// `op` and populates each with the inferred static shape.
static bool inferStaticShape(UnPackOp op, SmallVectorImpl<int64_t> &srcShape,
SmallVectorImpl<int64_t> &destShape) {
bool changeNeeded = false;
srcShape.assign(op.getSourceType().getShape().begin(),
op.getSourceType().getShape().end());
destShape.assign(op.getDestType().getShape().begin(),
op.getDestType().getShape().end());
llvm::SmallSetVector<int64_t, 4> innerDims;
innerDims.insert(op.getInnerDimsPos().begin(), op.getInnerDimsPos().end());
auto outerDimsPerm = op.getOuterDimsPerm();
int destRank = op.getDestRank();
for (auto i : llvm::seq<int64_t>(0, destRank)) {
if (innerDims.contains(i))
continue;
int64_t srcPos = i;
int64_t destPos = i;
if (!outerDimsPerm.empty())
srcPos = outerDimsPerm[destPos];
if (ShapedType::isDynamic(srcShape[srcPos]) ==
ShapedType::isDynamic(destShape[destPos])) {
continue;
}
int64_t size = srcShape[srcPos];
if (ShapedType::isDynamic(size))
size = destShape[destPos];
srcShape[srcPos] = size;
destShape[destPos] = size;
changeNeeded = true;
}
return changeNeeded;
}

LogicalResult UnPackOp::canonicalize(UnPackOp unPackOp,
PatternRewriter &rewriter) {
/// pack(unpack(x)) -> x
Expand All @@ -4251,6 +4285,31 @@ LogicalResult UnPackOp::canonicalize(UnPackOp unPackOp,
[&]() { unPackOp.setDpsInitOperand(0, newDest); });
return success();
}

// Insert tensor.cast ops if static shape inference is available..
SmallVector<int64_t> srcShape, destShape;
if (inferStaticShape(unPackOp, srcShape, destShape)) {
Location loc = unPackOp.getLoc();
Value source = unPackOp.getSource();
if (srcShape != unPackOp.getSourceType().getShape()) {
auto newSrcType = unPackOp.getSourceType().clone(srcShape);
source = rewriter.create<tensor::CastOp>(loc, newSrcType,
unPackOp.getSource());
}
Value dest = unPackOp.getDest();
if (destShape != unPackOp.getDestType().getShape()) {
auto newDestType = unPackOp.getDestType().clone(destShape);
dest =
rewriter.create<tensor::CastOp>(loc, newDestType, unPackOp.getDest());
}
Value newOp = rewriter.create<tensor::UnPackOp>(
loc, source, dest, unPackOp.getInnerDimsPos(), unPackOp.getMixedTiles(),
unPackOp.getOuterDimsPerm());
rewriter.replaceOpWithNewOp<tensor::CastOp>(
unPackOp, unPackOp.getResult().getType(), newOp);
return success();
}

return failure();
}

Expand Down
51 changes: 51 additions & 0 deletions mlir/test/Dialect/Tensor/canonicalize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -909,6 +909,41 @@ func.func @fold_unpack_constant_splat(%dest : tensor<128x256xf32>) -> tensor<128

// -----

func.func @infer_dest_shape_unpack(%src: tensor<10x20x30x40x16xf32>, %dest: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> {
%unpack = tensor.unpack %src
outer_dims_perm = [2, 1, 3, 0]
inner_dims_pos = [2]
inner_tiles = [16]
into %dest : tensor<10x20x30x40x16xf32> -> tensor<?x?x?x?xf32>
return %unpack : tensor<?x?x?x?xf32>
}
// CHECK-LABEL: func.func @infer_dest_shape_unpack
// CHECK-SAME: %[[SRC:[0-9a-zA-Z]+]]
// CHECK-SAME: %[[DEST:[0-9a-zA-Z]+]]
// CHECK: %[[CAST_DEST:.+]] = tensor.cast %[[DEST]] : tensor<?x?x?x?xf32> to tensor<30x20x?x10xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[SRC]] {{.+}} into %[[CAST_DEST]]
// CHECK: %[[CAST_UNPACK:.+]] = tensor.cast %[[UNPACK]] : tensor<30x20x?x10xf32> to tensor<?x?x?x?xf32>
// CHECK: return %[[CAST_UNPACK]]

// -----

func.func @infer_src_shape_unpack(%src: tensor<?x?x?x?x16xf32>, %dest: tensor<30x20x?x10xf32>) -> tensor<30x20x?x10xf32> {
%unpack = tensor.unpack %src
outer_dims_perm = [2, 1, 3, 0]
inner_dims_pos = [2]
inner_tiles = [16]
into %dest : tensor<?x?x?x?x16xf32> -> tensor<30x20x?x10xf32>
return %unpack : tensor<30x20x?x10xf32>
}
// CHECK-LABEL: func.func @infer_src_shape_unpack
// CHECK-SAME: %[[SRC:[0-9a-zA-Z]+]]
// CHECK-SAME: %[[DEST:[0-9a-zA-Z]+]]
// CHECK: %[[CAST_SRC:.+]] = tensor.cast %[[SRC]] : tensor<?x?x?x?x16xf32> to tensor<10x20x30x?x16xf32>
// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[CAST_SRC]]
// CHECK: return %[[UNPACK]]

// -----

// CHECK-LABEL: func @fold_overlapping_insert
// CHECK-SAME: %[[INPUT:.+]]: tensor<?x?x?xf32>, %{{.+}}: tensor<4x?x8xf32>, %[[SLICE2:.+]]: tensor<4x?x8xf32>
func.func @fold_overlapping_insert(%input : tensor<?x?x?xf32>, %slice1: tensor<4x?x8xf32>, %slice2: tensor<4x?x8xf32>, %i: index, %size: index) -> (tensor<?x?x?xf32>) {
Expand Down Expand Up @@ -2176,3 +2211,19 @@ func.func @generate_negative_size_verifies() -> tensor<?x8xi32> {
} : tensor<?x8xi32>
return %tensor : tensor<?x8xi32>
}

// -----

func.func @infer_and_fold_pack_unpack_same_tiles(%t: tensor<10x20x4x4xf32>) -> tensor<10x20x4x4xf32> {
%dim1 = arith.constant 40 : index
%dim2 = arith.constant 80 : index
%tensor_empty = tensor.empty(%dim1, %dim2) : tensor<?x?xf32>
%unpacked = tensor.unpack %t inner_dims_pos = [0, 1] inner_tiles = [4, 4] into %tensor_empty : tensor<10x20x4x4xf32> -> tensor<?x?xf32>
%cast = tensor.cast %unpacked : tensor<?x?xf32> to tensor<40x80xf32>
%tensor_empty1 = tensor.empty() : tensor<10x20x4x4xf32>
%packed = tensor.pack %cast inner_dims_pos = [0, 1] inner_tiles = [4, 4] into %tensor_empty1 : tensor<40x80xf32> -> tensor<10x20x4x4xf32>
return %packed : tensor<10x20x4x4xf32>
}
// CHECK-LABEL: func.func @infer_and_fold_pack_unpack_same_tiles
// CHECK-SAME: %[[SRC:[0-9a-zA-Z]+]]
// CHECK: return %[[SRC]]