Skip to content

[mlir][sparse] support type conversion from SoA COO to memrefs. #82398

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions mlir/include/mlir/Dialect/SparseTensor/IR/Enums.h
Original file line number Diff line number Diff line change
Expand Up @@ -303,9 +303,9 @@ struct LevelType {
}

/// Check if the `LevelType` is in the `LevelFormat`.
template <LevelFormat fmt>
template <LevelFormat... fmt>
constexpr bool isa() const {
return getLvlFmt() == fmt;
return (... || (getLvlFmt() == fmt)) || false;
}

/// Check if the `LevelType` has the properties
Expand Down
15 changes: 15 additions & 0 deletions mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorType.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,18 @@
namespace mlir {
namespace sparse_tensor {

/// A simple structure that encodes a range of levels in the sparse tensors that
/// forms a COO segment.
struct COOSegment {
std::pair<Level, Level> lvlRange; // [low, high)
bool isSoA;

bool isSegmentStart(Level l) const { return l == lvlRange.first; }
bool inSegment(Level l) const {
return l >= lvlRange.first && l < lvlRange.second;
}
};

//===----------------------------------------------------------------------===//
/// A wrapper around `RankedTensorType`, which has three goals:
///
Expand Down Expand Up @@ -330,6 +342,9 @@ class SparseTensorType {
/// Returns [un]ordered COO type for this sparse tensor type.
RankedTensorType getCOOType(bool ordered) const;

/// Returns a list of COO segments in the sparse tensor types.
SmallVector<COOSegment> getCOOSegments() const;

private:
// These two must be const, to ensure coherence of the memoized fields.
const RankedTensorType rtp;
Expand Down
63 changes: 56 additions & 7 deletions mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -74,11 +74,12 @@ void StorageLayout::foreachField(
callback) const {
const auto lvlTypes = enc.getLvlTypes();
const Level lvlRank = enc.getLvlRank();
const Level cooStart = SparseTensorType(enc).getCOOStart();
const Level end = cooStart == lvlRank ? cooStart : cooStart + 1;
SmallVector<COOSegment> cooSegs = SparseTensorType(enc).getCOOSegments();
FieldIndex fieldIdx = kDataFieldStartingIdx;

ArrayRef cooSegsRef = cooSegs;
// Per-level storage.
for (Level l = 0; l < end; l++) {
for (Level l = 0; l < lvlRank; /*l += 1 or l += AoSCooLen*/) {
const auto lt = lvlTypes[l];
if (isWithPosLT(lt)) {
if (!(callback(fieldIdx++, SparseTensorFieldKind::PosMemRef, l, lt)))
Expand All @@ -88,6 +89,21 @@ void StorageLayout::foreachField(
if (!(callback(fieldIdx++, SparseTensorFieldKind::CrdMemRef, l, lt)))
return;
}
if (!cooSegsRef.empty() && cooSegsRef.front().isSegmentStart(l)) {
if (!cooSegsRef.front().isSoA) {
// AoS COO, all singletons are fused into one memrefs. Skips the entire
// COO segement.
l = cooSegsRef.front().lvlRange.second;
} else {
// SoA COO, each singleton level has one memref.
l++;
}
// Expire handled COO segment.
cooSegsRef = cooSegsRef.drop_front();
} else {
// Non COO levels.
l++;
}
}
// The values array.
if (!(callback(fieldIdx++, SparseTensorFieldKind::ValMemRef, kInvalidLevel,
Expand Down Expand Up @@ -796,13 +812,46 @@ bool mlir::sparse_tensor::SparseTensorType::isCOOType(Level startLvl,
}

Level mlir::sparse_tensor::SparseTensorType::getCOOStart() const {
if (hasEncoding() && lvlRank > 1)
for (Level l = 0; l < lvlRank - 1; l++)
if (isCOOType(l, /*isUnique=*/false))
return l;
SmallVector<COOSegment> coo = getCOOSegments();
if (!coo.empty()) {
assert(coo.size() == 1);
return coo.front().lvlRange.first;
}
return lvlRank;
}

SmallVector<COOSegment>
mlir::sparse_tensor::SparseTensorType::getCOOSegments() const {
SmallVector<COOSegment> ret;
if (!hasEncoding() || lvlRank <= 1)
return ret;

ArrayRef<LevelType> lts = getLvlTypes();
Level l = 0;
while (l < lvlRank) {
auto lt = lts[l];
if (lt.isa<LevelFormat::Compressed, LevelFormat::LooseCompressed>()) {
auto cur = lts.begin() + l;
auto end = std::find_if(cur + 1, lts.end(), [](LevelType lt) {
return !lt.isa<LevelFormat::Singleton>();
});
unsigned cooLen = std::distance(cur, end);
if (cooLen > 1) {
// To support mixed SoA/AoS COO, we should break the segment when the
// storage scheme changes, for now we faithfully assume that all
// consecutive singleton levels have the same storage format as verified
// STEA.
ret.push_back(COOSegment{std::make_pair(l, l + cooLen),
lts[l + 1].isa<LevelPropNonDefault::SoA>()});
}
l += cooLen;
} else {
l++;
}
}
return ret;
}

RankedTensorType
mlir::sparse_tensor::SparseTensorType::getCOOType(bool ordered) const {
SmallVector<LevelType> lvlTypes;
Expand Down
26 changes: 26 additions & 0 deletions mlir/test/Dialect/SparseTensor/codegen.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,10 @@
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
}>

#SoACOO = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa))
}>

#CooPNo = #sparse_tensor.encoding<{
map = (d0, d1) -> (d1 : compressed(nonunique), d0 : singleton(nonordered))
}>
Expand All @@ -67,6 +71,28 @@ func.func @sparse_nop(%arg0: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #Spa
return %arg0 : tensor<?xf64, #SparseVector>
}

// CHECK-LABEL: func @sparse_nop_aos_coo(
// CHECK-SAME: %[[POS:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[AoS_CRD:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[VAL:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*]]: !sparse_tensor.storage_specifier
// CHECK: return %[[POS]], %[[AoS_CRD]], %[[VAL]], %[[A3]]
func.func @sparse_nop_aos_coo(%arg0: tensor<?x?xf64, #Coo>) -> tensor<?x?xf64, #Coo> {
return %arg0 : tensor<?x?xf64, #Coo>
}

// CHECK-LABEL: func @sparse_nop_soa_coo(
// CHECK-SAME: %[[POS:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[SoA_CRD_0:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[SoA_CRD_1:.*2]]: memref<?xindex>,
// CHECK-SAME: %[[VAL:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*]]: !sparse_tensor.storage_specifier
// CHECK: return %[[POS]], %[[SoA_CRD_0]], %[[SoA_CRD_1]], %[[VAL]], %[[A3]]
func.func @sparse_nop_soa_coo(%arg0: tensor<?x?xf64, #SoACOO>) -> tensor<?x?xf64, #SoACOO> {
return %arg0 : tensor<?x?xf64, #SoACOO>
}


// CHECK-LABEL: func @sparse_nop_multi_ret(
// CHECK-SAME: %[[A0:.*0]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xi64>,
Expand Down