Skip to content

[mlir][sparse] assemble SoA COO correctly. #82449

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 21, 2024

Conversation

PeimingLiu
Copy link
Member

No description provided.

@llvmbot
Copy link
Member

llvmbot commented Feb 21, 2024

@llvm/pr-subscribers-mlir-sparse

@llvm/pr-subscribers-mlir

Author: Peiming Liu (PeimingLiu)

Changes

Full diff: https://github.com/llvm/llvm-project/pull/82449.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp (+37-40)
  • (modified) mlir/test/Dialect/SparseTensor/external.mlir (+24)
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp
index 9414d81e6bf5c6..a107cd71959abd 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseAssembler.cpp
@@ -22,16 +22,13 @@ using namespace sparse_tensor;
 // Helper methods.
 //===----------------------------------------------------------------------===//
 
-// TODO: reuse StorageLayout::foreachField?
-
-// TODO: we need COO AoS and SoA
-
 // Convert type range to new types range, with sparse tensors externalized.
-void convTypes(TypeRange types, SmallVectorImpl<Type> &convTypes,
-               SmallVectorImpl<Type> *extraTypes = nullptr) {
+static void convTypes(TypeRange types, SmallVectorImpl<Type> &convTypes,
+                      SmallVectorImpl<Type> *extraTypes = nullptr) {
   for (auto type : types) {
+    auto enc = getSparseTensorEncoding(type);
     // All "dense" data passes through unmodified.
-    if (!getSparseTensorEncoding(type)) {
+    if (!enc) {
       convTypes.push_back(type);
       continue;
     }
@@ -42,29 +39,30 @@ void convTypes(TypeRange types, SmallVectorImpl<Type> &convTypes,
     convTypes.push_back(vtp);
     if (extraTypes)
       extraTypes->push_back(vtp);
-    // Convert the external representations of the pos/crd arrays.
-    for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
-      const auto lt = stt.getLvlType(lvl);
-      if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
-        auto ptp = RankedTensorType::get(shape, stt.getPosType());
-        auto ctp = RankedTensorType::get(shape, stt.getCrdType());
-        convTypes.push_back(ptp);
-        convTypes.push_back(ctp);
-        if (extraTypes) {
-          extraTypes->push_back(ptp);
-          extraTypes->push_back(ctp);
-        }
-      } else {
-        assert(isDenseLT(lt)); // TODO: handle other cases
+
+    // Convert the external representation of the position/coordinate array.
+    foreachFieldAndTypeInSparseTensor(stt, [&convTypes, extraTypes](
+                                               Type t, FieldIndex,
+                                               SparseTensorFieldKind kind,
+                                               Level, LevelType) {
+      if (kind == SparseTensorFieldKind::CrdMemRef ||
+          kind == SparseTensorFieldKind::PosMemRef) {
+        ShapedType st = t.cast<ShapedType>();
+        auto rtp = RankedTensorType::get(st.getShape(), st.getElementType());
+        convTypes.push_back(rtp);
+        if (extraTypes)
+          extraTypes->push_back(rtp);
       }
-    }
+      return true;
+    });
   }
 }
 
 // Convert input and output values to [dis]assemble ops for sparse tensors.
-void convVals(OpBuilder &builder, Location loc, TypeRange types,
-              ValueRange fromVals, ValueRange extraVals,
-              SmallVectorImpl<Value> &toVals, unsigned extra, bool isIn) {
+static void convVals(OpBuilder &builder, Location loc, TypeRange types,
+                     ValueRange fromVals, ValueRange extraVals,
+                     SmallVectorImpl<Value> &toVals, unsigned extra,
+                     bool isIn) {
   unsigned idx = 0;
   for (auto type : types) {
     // All "dense" data passes through unmodified.
@@ -85,29 +83,28 @@ void convVals(OpBuilder &builder, Location loc, TypeRange types,
     if (!isIn) {
       inputs.push_back(extraVals[extra++]);
       retTypes.push_back(RankedTensorType::get(shape, stt.getElementType()));
-      cntTypes.push_back(builder.getIndexType());
+      cntTypes.push_back(builder.getIndexType()); // nnz
     }
+
     // Collect the external representations of the pos/crd arrays.
-    for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) {
-      const auto lt = stt.getLvlType(lvl);
-      if (isCompressedLT(lt) || isLooseCompressedLT(lt)) {
+    foreachFieldAndTypeInSparseTensor(stt, [&, isIn](Type t, FieldIndex,
+                                                     SparseTensorFieldKind kind,
+                                                     Level, LevelType) {
+      if (kind == SparseTensorFieldKind::CrdMemRef ||
+          kind == SparseTensorFieldKind::PosMemRef) {
         if (isIn) {
           inputs.push_back(fromVals[idx++]);
-          inputs.push_back(fromVals[idx++]);
         } else {
-          Type pTp = stt.getPosType();
-          Type cTp = stt.getCrdType();
-          inputs.push_back(extraVals[extra++]);
+          ShapedType st = t.cast<ShapedType>();
+          auto rtp = RankedTensorType::get(st.getShape(), st.getElementType());
           inputs.push_back(extraVals[extra++]);
-          retTypes.push_back(RankedTensorType::get(shape, pTp));
-          retTypes.push_back(RankedTensorType::get(shape, cTp));
-          cntTypes.push_back(pTp);
-          cntTypes.push_back(cTp);
+          retTypes.push_back(rtp);
+          cntTypes.push_back(rtp.getElementType());
         }
-      } else {
-        assert(isDenseLT(lt)); // TODO: handle other cases
       }
-    }
+      return true;
+    });
+
     if (isIn) {
       // Assemble multiple inputs into a single sparse tensor.
       auto a = builder.create<sparse_tensor::AssembleOp>(loc, rtp, inputs);
diff --git a/mlir/test/Dialect/SparseTensor/external.mlir b/mlir/test/Dialect/SparseTensor/external.mlir
index c17ba13e86c926..b5701ad2024264 100644
--- a/mlir/test/Dialect/SparseTensor/external.mlir
+++ b/mlir/test/Dialect/SparseTensor/external.mlir
@@ -100,3 +100,27 @@ func.func @sparse_out2(%arg0: tensor<64x64xf32>) -> (tensor<64x64xf32>, tensor<6
 func.func @sparse_inout(%arg0: tensor<64x64xf32, #sparse>) -> tensor<64x64xf32, #sparse> {
   return %arg0 : tensor<64x64xf32, #sparse>
 }
+
+// -----
+
+// CHECK-LABEL: func.func @sparse_inout_coo_soa(
+// CHECK-SAME:    %[[A:.*0]]: tensor<?xf32>,
+// CHECK-SAME:    %[[B:.*1]]: tensor<?xindex>,
+// CHECK-SAME:    %[[C:.*2]]: tensor<?xindex>,
+// CHECK-SAME:    %[[D:.*3]]: tensor<?xindex>,
+// CHECK-SAME:    %[[E:.*4]]: tensor<?xf32>,
+// CHECK-SAME:    %[[F:.*5]]: tensor<?xindex>,
+// CHECK-SAME:    %[[G:.*6]]: tensor<?xindex>,
+// CHECK-SAME:    %[[H:.*7]]: tensor<?xindex>) -> (tensor<?xf32>, tensor<?xindex>, tensor<?xindex>, tensor<?xindex>) {
+// CHECK:         %[[I:.*]] = sparse_tensor.assemble %[[A]], %[[B]], %[[C]], %[[D]]
+// CHECK:         %[[F:.*]] = call @_internal_sparse_inout_coo_soa(%[[I]])
+// CHECK:         sparse_tensor.disassemble %[[F]]
+// CHECK:         return
+// CHECK:       }
+// CHECK:       func.func private @_internal_sparse_inout
+#sparse = #sparse_tensor.encoding<{
+   map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa))
+}>
+func.func @sparse_inout_coo_soa(%arg0: tensor<64x64xf32, #sparse>) -> tensor<64x64xf32, #sparse> {
+  return %arg0 : tensor<64x64xf32, #sparse>
+}

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
mlir:sparse Sparse compiler in MLIR mlir
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants