Skip to content

Revert "[mlir][sparse] Migration to sparse_tensor.print" #83499

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run_opts} = -e entry -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
Expand All @@ -28,7 +28,7 @@
}>

module {
func.func @main() {
func.func @entry() {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f64
%d = arith.constant dense<[[ 1.0, 2.0, 3.0, 4.0 ],
Expand All @@ -39,14 +39,19 @@ module {
%s = sparse_tensor.convert %d : tensor<5x4xf64> to tensor<5x4xf64, #CSR_hi>

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 17
// CHECK-NEXT: pos[1] : ( 0, 4, 4, 8, 8, 9, 9, 13
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 2, 0, 1, 2, 3, 0, 1, 2, 3
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 5.5, 9, 10, 11, 12, 13, 14, 15, 16
// CHECK-NEXT: ----
// CHECK: ( 0, 4, 4, 8, 8, 9, 9, 13 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 1, 2, 3, 2, 0, 1, 2, 3, 0, 1, 2, 3 )
// CHECK-NEXT: ( 1, 2, 3, 4, 5, 6, 7, 8, 5.5, 9, 10, 11, 12, 13, 14, 15, 16 )
//
sparse_tensor.print %s : tensor<5x4xf64, #CSR_hi>
%pos = sparse_tensor.positions %s {level = 1 : index } : tensor<5x4xf64, #CSR_hi> to memref<?xindex>
%vecp = vector.transfer_read %pos[%c0], %c0 : memref<?xindex>, vector<8xindex>
vector.print %vecp : vector<8xindex>
%crd = sparse_tensor.coordinates %s {level = 1 : index } : tensor<5x4xf64, #CSR_hi> to memref<?xindex>
%vecc = vector.transfer_read %crd[%c0], %c0 : memref<?xindex>, vector<17xindex>
vector.print %vecc : vector<17xindex>
%val = sparse_tensor.values %s : tensor<5x4xf64, #CSR_hi> to memref<?xf64>
%vecv = vector.transfer_read %val[%c0], %f0 : memref<?xf64>, vector<17xf64>
vector.print %vecv : vector<17xf64>

// Release the resources.
bufferization.dealloc_tensor %s: tensor<5x4xf64, #CSR_hi>
Expand Down
237 changes: 99 additions & 138 deletions mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run_opts} = -e entry -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
Expand Down Expand Up @@ -90,7 +90,7 @@ module {
//
// Main driver.
//
func.func @main() {
func.func @entry() {
%c0 = arith.constant 0 : index

// Initialize various matrices, dense for stress testing,
Expand Down Expand Up @@ -140,94 +140,33 @@ module {
%b4 = sparse_tensor.convert %sb : tensor<8x4xf64> to tensor<8x4xf64, #DCSR>

//
// Sanity check before going into the computations.
//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 32
// CHECK-NEXT: pos[1] : ( 0, 8, 16, 24, 32
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7
// CHECK-NEXT: values : ( 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4
// CHECK-NEXT: ----
//
sparse_tensor.print %a1 : tensor<4x8xf64, #CSR>

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 32
// CHECK-NEXT: pos[0] : ( 0, 4
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3
// CHECK-NEXT: pos[1] : ( 0, 8, 16, 24, 32
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7
// CHECK-NEXT: values : ( 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4
// CHECK-NEXT: ----
//
sparse_tensor.print %a2 : tensor<4x8xf64, #DCSR>

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 4
// CHECK-NEXT: pos[1] : ( 0, 2, 2, 3, 4
// CHECK-NEXT: crd[1] : ( 1, 5, 1, 7
// CHECK-NEXT: values : ( 2.1, 6.1, 2.3, 1
// CHECK-NEXT: ----
//
sparse_tensor.print %a3 : tensor<4x8xf64, #CSR>

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 4
// CHECK-NEXT: pos[0] : ( 0, 3
// CHECK-NEXT: crd[0] : ( 0, 2, 3
// CHECK-NEXT: pos[1] : ( 0, 2, 3, 4
// CHECK-NEXT: crd[1] : ( 1, 5, 1, 7
// CHECK-NEXT: values : ( 2.1, 6.1, 2.3, 1
// CHECK-NEXT: ----
//
sparse_tensor.print %a4 : tensor<4x8xf64, #DCSR>

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 32
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16, 20, 24, 28, 32
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
// CHECK-NEXT: values : ( 10.1, 11.1, 12.1, 13.1, 10.2, 11.2, 12.2, 13.2, 10.3, 11.3, 12.3, 13.3, 10.4, 11.4, 12.4, 13.4, 10.5, 11.5, 12.5, 13.5, 10.6, 11.6, 12.6, 13.6, 10.7, 11.7, 12.7, 13.7, 10.8, 11.8, 12.8, 13.8
// CHECK-NEXT: ----
//
sparse_tensor.print %b1 : tensor<8x4xf64, #CSR>

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 32
// CHECK-NEXT: pos[0] : ( 0, 8
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16, 20, 24, 28, 32
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
// CHECK-NEXT: values : ( 10.1, 11.1, 12.1, 13.1, 10.2, 11.2, 12.2, 13.2, 10.3, 11.3, 12.3, 13.3, 10.4, 11.4, 12.4, 13.4, 10.5, 11.5, 12.5, 13.5, 10.6, 11.6, 12.6, 13.6, 10.7, 11.7, 12.7, 13.7, 10.8, 11.8, 12.8, 13.8
// CHECK-NEXT: ----
//
sparse_tensor.print %b2 : tensor<8x4xf64, #DCSR>

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 8
// CHECK-NEXT: pos[1] : ( 0, 1, 2, 3, 4, 4, 5, 6, 8
// CHECK-NEXT: crd[1] : ( 3, 2, 1, 0, 1, 2, 2, 3
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8
// CHECK-NEXT: ----
//
sparse_tensor.print %b3 : tensor<8x4xf64, #CSR>

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 8
// CHECK-NEXT: pos[0] : ( 0, 7
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 5, 6, 7
// CHECK-NEXT: pos[1] : ( 0, 1, 2, 3, 4, 5, 6, 8
// CHECK-NEXT: crd[1] : ( 3, 2, 1, 0, 1, 2, 2, 3
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8
// CHECK-NEXT: ----
//
sparse_tensor.print %b4 : tensor<8x4xf64, #DCSR>
// Sanity check on stored entries before going into the computations.
//
// CHECK: 32
// CHECK-NEXT: 32
// CHECK-NEXT: 4
// CHECK-NEXT: 4
// CHECK-NEXT: 32
// CHECK-NEXT: 32
// CHECK-NEXT: 8
// CHECK-NEXT: 8
//
%noea1 = sparse_tensor.number_of_entries %a1 : tensor<4x8xf64, #CSR>
%noea2 = sparse_tensor.number_of_entries %a2 : tensor<4x8xf64, #DCSR>
%noea3 = sparse_tensor.number_of_entries %a3 : tensor<4x8xf64, #CSR>
%noea4 = sparse_tensor.number_of_entries %a4 : tensor<4x8xf64, #DCSR>
%noeb1 = sparse_tensor.number_of_entries %b1 : tensor<8x4xf64, #CSR>
%noeb2 = sparse_tensor.number_of_entries %b2 : tensor<8x4xf64, #DCSR>
%noeb3 = sparse_tensor.number_of_entries %b3 : tensor<8x4xf64, #CSR>
%noeb4 = sparse_tensor.number_of_entries %b4 : tensor<8x4xf64, #DCSR>
vector.print %noea1 : index
vector.print %noea2 : index
vector.print %noea3 : index
vector.print %noea4 : index
vector.print %noeb1 : index
vector.print %noeb2 : index
vector.print %noeb3 : index
vector.print %noeb4 : index

// Call kernels with dense.
%0 = call @matmul1(%da, %db, %zero)
Expand Down Expand Up @@ -269,26 +208,24 @@ module {
call @printMemrefF64(%u0) : (tensor<*xf64>) -> ()

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 16
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
// CHECK-NEXT: values : ( 388.76, 425.56, 462.36, 499.16, 397.12, 434.72, 472.32, 509.92, 405.48, 443.88, 482.28, 520.68, 413.84, 453.04, 492.24, 531.44
// CHECK-NEXT: ----
// CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16],
// CHECK-NEXT: [397.12, 434.72, 472.32, 509.92],
// CHECK-NEXT: [405.48, 443.88, 482.28, 520.68],
// CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]]
//
sparse_tensor.print %1 : tensor<4x4xf64, #CSR>
%c1 = sparse_tensor.convert %1 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
%c1u = tensor.cast %c1 : tensor<4x4xf64> to tensor<*xf64>
call @printMemrefF64(%c1u) : (tensor<*xf64>) -> ()

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 16
// CHECK-NEXT: pos[0] : ( 0, 4
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
// CHECK-NEXT: values : ( 388.76, 425.56, 462.36, 499.16, 397.12, 434.72, 472.32, 509.92, 405.48, 443.88, 482.28, 520.68, 413.84, 453.04, 492.24, 531.44
// CHECK-NEXT: ----
// CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16],
// CHECK-NEXT: [397.12, 434.72, 472.32, 509.92],
// CHECK-NEXT: [405.48, 443.88, 482.28, 520.68],
// CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]]
//
sparse_tensor.print %2 : tensor<4x4xf64, #DCSR>
%c2 = sparse_tensor.convert %2 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
%c2u = tensor.cast %c2 : tensor<4x4xf64> to tensor<*xf64>
call @printMemrefF64(%c2u) : (tensor<*xf64>) -> ()

//
// CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
Expand All @@ -300,26 +237,24 @@ module {
call @printMemrefF64(%u3) : (tensor<*xf64>) -> ()

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 12
// CHECK-NEXT: pos[1] : ( 0, 4, 4, 8, 12
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
// CHECK-NEXT: values : ( 86.08, 94.28, 102.48, 110.68, 23.46, 25.76, 28.06, 30.36, 10.8, 11.8, 12.8, 13.8
// CHECK-NEXT: ----
// CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
// CHECK-NEXT: [0, 0, 0, 0],
// CHECK-NEXT: [23.46, 25.76, 28.06, 30.36],
// CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]]
//
sparse_tensor.print %4 : tensor<4x4xf64, #CSR>
%c4 = sparse_tensor.convert %4 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
%c4u = tensor.cast %c4 : tensor<4x4xf64> to tensor<*xf64>
call @printMemrefF64(%c4u) : (tensor<*xf64>) -> ()

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 12
// CHECK-NEXT: pos[0] : ( 0, 3
// CHECK-NEXT: crd[0] : ( 0, 2, 3
// CHECK-NEXT: pos[1] : ( 0, 4, 8, 12
// CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
// CHECK-NEXT: values : ( 86.08, 94.28, 102.48, 110.68, 23.46, 25.76, 28.06, 30.36, 10.8, 11.8, 12.8, 13.8
// CHECK-NEXT: ----
// CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68],
// CHECK-NEXT: [0, 0, 0, 0],
// CHECK-NEXT: [23.46, 25.76, 28.06, 30.36],
// CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]]
//
sparse_tensor.print %5 : tensor<4x4xf64, #DCSR>
%c5 = sparse_tensor.convert %5 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
%c5u = tensor.cast %c5 : tensor<4x4xf64> to tensor<*xf64>
call @printMemrefF64(%c5u) : (tensor<*xf64>) -> ()

//
// CHECK: {{\[}}[0, 30.5, 4.2, 0],
Expand All @@ -331,26 +266,46 @@ module {
call @printMemrefF64(%u6) : (tensor<*xf64>) -> ()

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 5
// CHECK-NEXT: pos[1] : ( 0, 2, 2, 3, 5
// CHECK-NEXT: crd[1] : ( 1, 2, 2, 2, 3
// CHECK-NEXT: values : ( 30.5, 4.2, 4.6, 7, 8
// CHECK-NEXT: ----
// CHECK: {{\[}}[0, 30.5, 4.2, 0],
// CHECK-NEXT: [0, 0, 0, 0],
// CHECK-NEXT: [0, 0, 4.6, 0],
// CHECK-NEXT: [0, 0, 7, 8]]
//
sparse_tensor.print %7 : tensor<4x4xf64, #CSR>
%c7 = sparse_tensor.convert %7 : tensor<4x4xf64, #CSR> to tensor<4x4xf64>
%c7u = tensor.cast %c7 : tensor<4x4xf64> to tensor<*xf64>
call @printMemrefF64(%c7u) : (tensor<*xf64>) -> ()

//
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 5
// CHECK-NEXT: pos[0] : ( 0, 3
// CHECK-NEXT: crd[0] : ( 0, 2, 3
// CHECK-NEXT: pos[1] : ( 0, 2, 3, 5
// CHECK-NEXT: crd[1] : ( 1, 2, 2, 2, 3
// CHECK-NEXT: values : ( 30.5, 4.2, 4.6, 7, 8
// CHECK-NEXT: ----
// CHECK: {{\[}}[0, 30.5, 4.2, 0],
// CHECK-NEXT: [0, 0, 0, 0],
// CHECK-NEXT: [0, 0, 4.6, 0],
// CHECK-NEXT: [0, 0, 7, 8]]
//
%c8 = sparse_tensor.convert %8 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
%c8u = tensor.cast %c8 : tensor<4x4xf64> to tensor<*xf64>
call @printMemrefF64(%c8u) : (tensor<*xf64>) -> ()

//
// Sanity check on nonzeros.
//
// CHECK: [30.5, 4.2, 4.6, 7, 8{{.*}}]
// CHECK: [30.5, 4.2, 4.6, 7, 8{{.*}}]
//
%val7 = sparse_tensor.values %7 : tensor<4x4xf64, #CSR> to memref<?xf64>
%val8 = sparse_tensor.values %8 : tensor<4x4xf64, #DCSR> to memref<?xf64>
call @printMemref1dF64(%val7) : (memref<?xf64>) -> ()
call @printMemref1dF64(%val8) : (memref<?xf64>) -> ()

//
// Sanity check on stored entries after the computations.
//
// CHECK-NEXT: 5
// CHECK-NEXT: 5
//
sparse_tensor.print %8 : tensor<4x4xf64, #DCSR>
%noe7 = sparse_tensor.number_of_entries %7 : tensor<4x4xf64, #CSR>
%noe8 = sparse_tensor.number_of_entries %8 : tensor<4x4xf64, #DCSR>
vector.print %noe7 : index
vector.print %noe8 : index

// Release the resources.
bufferization.dealloc_tensor %a1 : tensor<4x8xf64, #CSR>
Expand All @@ -361,6 +316,12 @@ module {
bufferization.dealloc_tensor %b2 : tensor<8x4xf64, #DCSR>
bufferization.dealloc_tensor %b3 : tensor<8x4xf64, #CSR>
bufferization.dealloc_tensor %b4 : tensor<8x4xf64, #DCSR>
bufferization.dealloc_tensor %c1 : tensor<4x4xf64>
bufferization.dealloc_tensor %c2 : tensor<4x4xf64>
bufferization.dealloc_tensor %c4 : tensor<4x4xf64>
bufferization.dealloc_tensor %c5 : tensor<4x4xf64>
bufferization.dealloc_tensor %c7 : tensor<4x4xf64>
bufferization.dealloc_tensor %c8 : tensor<4x4xf64>
bufferization.dealloc_tensor %0 : tensor<4x4xf64>
bufferization.dealloc_tensor %1 : tensor<4x4xf64, #CSR>
bufferization.dealloc_tensor %2 : tensor<4x4xf64, #DCSR>
Expand Down
Loading