Skip to content

[mlir][sparse] migration to sparse_tensor.print #83926

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 21 additions & 16 deletions mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_abs.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_opts} = -e entry -entry-point-result=void
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
Expand Down Expand Up @@ -73,7 +73,7 @@ module {
}

// Driver method to call and verify sign kernel.
func.func @entry() {
func.func @main() {
%c0 = arith.constant 0 : index
%df = arith.constant 99.99 : f64
%di = arith.constant 9999 : i32
Expand Down Expand Up @@ -116,21 +116,26 @@ module {
//
// Verify the results.
//
// CHECK: 12
// CHECK-NEXT: ( 1.5, 1.5, 10.2, 11.3, 1, 1, nan, nan, inf, inf, 0, 0 )
// CHECK-NEXT: 9
// CHECK-NEXT: ( -2147483648, 2147483647, 1000, 1, 0, 1, 1000, 2147483646, 2147483647 )
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 12
// CHECK-NEXT: dim = ( 32 )
// CHECK-NEXT: lvl = ( 32 )
// CHECK-NEXT: pos[0] : ( 0, 12,
// CHECK-NEXT: crd[0] : ( 0, 3, 5, 11, 13, 17, 18, 20, 21, 28, 29, 31,
// CHECK-NEXT: values : ( 1.5, 1.5, 10.2, 11.3, 1, 1, nan, nan, inf, inf, 0, 0,
// CHECK-NEXT: ----
//
%x = sparse_tensor.values %0 : tensor<?xf64, #SparseVector> to memref<?xf64>
%y = sparse_tensor.values %1 : tensor<?xi32, #SparseVector> to memref<?xi32>
%a = vector.transfer_read %x[%c0], %df: memref<?xf64>, vector<12xf64>
%b = vector.transfer_read %y[%c0], %di: memref<?xi32>, vector<9xi32>
%na = sparse_tensor.number_of_entries %0 : tensor<?xf64, #SparseVector>
%nb = sparse_tensor.number_of_entries %1 : tensor<?xi32, #SparseVector>
vector.print %na : index
vector.print %a : vector<12xf64>
vector.print %nb : index
vector.print %b : vector<9xi32>
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 9
// CHECK-NEXT: dim = ( 32 )
// CHECK-NEXT: lvl = ( 32 )
// CHECK-NEXT: pos[0] : ( 0, 9,
// CHECK-NEXT: crd[0] : ( 0, 3, 5, 11, 13, 17, 18, 21, 31,
// CHECK-NEXT: values : ( -2147483648, 2147483647, 1000, 1, 0, 1, 1000, 2147483646, 2147483647,
// CHECK-NEXT: ----
//
sparse_tensor.print %0 : tensor<?xf64, #SparseVector>
sparse_tensor.print %1 : tensor<?xi32, #SparseVector>

// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
Expand Down
260 changes: 144 additions & 116 deletions mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_binary.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_opts} = -e entry -entry-point-result=void
// DEFINE: %{run_opts} = -e main -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
Expand Down Expand Up @@ -365,84 +365,8 @@ module {
return %0 : tensor<4x4xf64, #DCSR>
}

//
// Utility functions to dump the value of a tensor.
//

func.func @dump_vec(%arg0: tensor<?xf64, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant 0.0 : f64
%0 = sparse_tensor.values %arg0 : tensor<?xf64, #SparseVector> to memref<?xf64>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<16xf64>
vector.print %1 : vector<16xf64>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0 : tensor<?xf64, #SparseVector> to tensor<?xf64>
%3 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<32xf64>
vector.print %3 : vector<32xf64>
bufferization.dealloc_tensor %dv : tensor<?xf64>
return
}

func.func @dump_vec_i32(%arg0: tensor<?xi32, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant 0 : i32
%0 = sparse_tensor.values %arg0 : tensor<?xi32, #SparseVector> to memref<?xi32>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xi32>, vector<24xi32>
vector.print %1 : vector<24xi32>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0 : tensor<?xi32, #SparseVector> to tensor<?xi32>
%3 = vector.transfer_read %dv[%c0], %d0: tensor<?xi32>, vector<32xi32>
vector.print %3 : vector<32xi32>
bufferization.dealloc_tensor %dv : tensor<?xi32>
return
}

func.func @dump_mat(%arg0: tensor<?x?xf64, #DCSR>) {
%d0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
%dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #DCSR> to tensor<?x?xf64>
%1 = vector.transfer_read %dm[%c0, %c0], %d0: tensor<?x?xf64>, vector<4x8xf64>
vector.print %1 : vector<4x8xf64>
bufferization.dealloc_tensor %dm : tensor<?x?xf64>
return
}

func.func @dump_mat_4x4(%A: tensor<4x4xf64, #DCSR>) {
%c0 = arith.constant 0 : index
%du = arith.constant 0.0 : f64

%c = sparse_tensor.convert %A : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
%v = vector.transfer_read %c[%c0, %c0], %du: tensor<4x4xf64>, vector<4x4xf64>
vector.print %v : vector<4x4xf64>

%1 = sparse_tensor.values %A : tensor<4x4xf64, #DCSR> to memref<?xf64>
%2 = vector.transfer_read %1[%c0], %du: memref<?xf64>, vector<16xf64>
vector.print %2 : vector<16xf64>

bufferization.dealloc_tensor %c : tensor<4x4xf64>
return
}

func.func @dump_mat_4x4_i8(%A: tensor<4x4xi8, #DCSR>) {
%c0 = arith.constant 0 : index
%du = arith.constant 0 : i8

%c = sparse_tensor.convert %A : tensor<4x4xi8, #DCSR> to tensor<4x4xi8>
%v = vector.transfer_read %c[%c0, %c0], %du: tensor<4x4xi8>, vector<4x4xi8>
vector.print %v : vector<4x4xi8>

%1 = sparse_tensor.values %A : tensor<4x4xi8, #DCSR> to memref<?xi8>
%2 = vector.transfer_read %1[%c0], %du: memref<?xi8>, vector<16xi8>
vector.print %2 : vector<16xi8>

bufferization.dealloc_tensor %c : tensor<4x4xi8>
return
}

// Driver method to call and verify kernels.
func.func @entry() {
func.func @main() {
%c0 = arith.constant 0 : index

// Setup sparse vectors.
Expand Down Expand Up @@ -525,45 +449,149 @@ module {
//
// Verify the results.
//
// CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
// CHECK-NEXT: ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 11, 0, 12, 13, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 15, 0, 16, 0, 0, 17, 0, 0, 0, 0, 0, 0, 18, 19, 0, 20 )
// CHECK-NEXT: ( 1, 11, 2, 13, 14, 3, 15, 4, 16, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
// CHECK-NEXT: ( 0, 6, 3, 28, 0, 6, 56, 72, 9, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 28, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 56, 72, 0, 9 )
// CHECK-NEXT: ( 1, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 3, 11, 17, 20, 21, 28, 29, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 17, 0, 0, 20, 21, 0, 0, 0, 0, 0, 0, 28, 29, 0, 31 )
// CHECK-NEXT: ( ( 7, 0, 0, 0, 0, 0, 0, -5 ), ( -4, 0, 0, 0, 0, 0, -3, 0 ), ( 0, -2, 0, 0, 0, 0, 0, 7 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( 1, 5, 2, 4 ), ( 5, 4, 0, 0 ) )
// CHECK-NEXT: ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( 1, 5, 2, 4 ), ( 5, 4, 0, 0 ) )
// CHECK-NEXT: ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( -1, -5, 2, 4 ), ( 1, 4, 0, 0 ) )
// CHECK-NEXT: ( 2, 4, 1, 2.5, -1, -5, 2, 4, 1, 4, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 0, 0, 1, -1 ), ( 0, 1, 0, 0 ), ( -1, -2, -2, 2 ), ( 1, 2, 0, 0 ) )
// CHECK-NEXT: ( 0, 1, -1, 1, -1, -2, -2, 2, 1, 2, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 1, 0, 0, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 0, 0 ) )
// CHECK-NEXT: ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 0, 0, 0, -1 ), ( 0, 0, 0, 0 ), ( -1, -5, -2, 4 ), ( 0, 4, 0, 0 ) )
// CHECK-NEXT: ( -1, -1, -5, -2, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 9
// CHECK-NEXT: dim = ( 32 )
// CHECK-NEXT: lvl = ( 32 )
// CHECK-NEXT: pos[0] : ( 0, 9,
// CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31,
// CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 10
// CHECK-NEXT: dim = ( 32 )
// CHECK-NEXT: lvl = ( 32 )
// CHECK-NEXT: pos[0] : ( 0, 10,
// CHECK-NEXT: crd[0] : ( 1, 3, 4, 10, 16, 18, 21, 28, 29, 31,
// CHECK-NEXT: values : ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 14
// CHECK-NEXT: dim = ( 32 )
// CHECK-NEXT: lvl = ( 32 )
// CHECK-NEXT: pos[0] : ( 0, 14,
// CHECK-NEXT: crd[0] : ( 0, 1, 3, 4, 10, 11, 16, 17, 18, 20, 21, 28, 29, 31,
// CHECK-NEXT: values : ( 1, 11, 2, 13, 14, 3, 15, 4, 16, 5, 6, 7, 8, 9,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 9
// CHECK-NEXT: dim = ( 32 )
// CHECK-NEXT: lvl = ( 32 )
// CHECK-NEXT: pos[0] : ( 0, 9,
// CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31,
// CHECK-NEXT: values : ( 0, 6, 3, 28, 0, 6, 56, 72, 9,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 4
// CHECK-NEXT: dim = ( 32 )
// CHECK-NEXT: lvl = ( 32 )
// CHECK-NEXT: pos[0] : ( 0, 4,
// CHECK-NEXT: crd[0] : ( 0, 11, 17, 20,
// CHECK-NEXT: values : ( 1, 3, 4, 5,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 9
// CHECK-NEXT: dim = ( 32 )
// CHECK-NEXT: lvl = ( 32 )
// CHECK-NEXT: pos[0] : ( 0, 9,
// CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31,
// CHECK-NEXT: values : ( 0, 3, 11, 17, 20, 21, 28, 29, 31,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 6
// CHECK-NEXT: dim = ( 4, 8 )
// CHECK-NEXT: lvl = ( 4, 8 )
// CHECK-NEXT: pos[0] : ( 0, 3,
// CHECK-NEXT: crd[0] : ( 0, 1, 2,
// CHECK-NEXT: pos[1] : ( 0, 2, 4, 6,
// CHECK-NEXT: crd[1] : ( 0, 7, 0, 6, 1, 7,
// CHECK-NEXT: values : ( 7, -5, -4, -3, -2, 7,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 10
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[0] : ( 0, 4,
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3,
// CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10,
// CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1,
// CHECK-NEXT: values : ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 10
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[0] : ( 0, 4,
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3,
// CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10,
// CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1,
// CHECK-NEXT: values : ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 10
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[0] : ( 0, 4,
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3,
// CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10,
// CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1,
// CHECK-NEXT: values : ( 2, 4, 1, 2.5, -1, -5, 2, 4, 1, 4,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 10
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[0] : ( 0, 4,
// CHECK-NEXT: crd[0] : ( 0, 1, 2, 3,
// CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10,
// CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1,
// CHECK-NEXT: values : ( 0, 1, -1, 1, -1, -2, -2, 2, 1, 2,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 4
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[0] : ( 0, 3,
// CHECK-NEXT: crd[0] : ( 0, 1, 3,
// CHECK-NEXT: pos[1] : ( 0, 2, 3, 4,
// CHECK-NEXT: crd[1] : ( 0, 2, 1, 0,
// CHECK-NEXT: values : ( 1, 0, 0, 0,
// CHECK-NEXT: ----
//
// CHECK-NEXT: ---- Sparse Tensor ----
// CHECK-NEXT: nse = 6
// CHECK-NEXT: dim = ( 4, 4 )
// CHECK-NEXT: lvl = ( 4, 4 )
// CHECK-NEXT: pos[0] : ( 0, 3,
// CHECK-NEXT: crd[0] : ( 0, 2, 3,
// CHECK-NEXT: pos[1] : ( 0, 1, 5, 6,
// CHECK-NEXT: crd[1] : ( 3, 0, 1, 2, 3, 1,
// CHECK-NEXT: values : ( -1, -1, -5, -2, 4, 4,
//
call @dump_vec(%sv1) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec(%sv2) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec_i32(%0) : (tensor<?xi32, #SparseVector>) -> ()
call @dump_vec(%1) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec(%2) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec_i32(%3) : (tensor<?xi32, #SparseVector>) -> ()
call @dump_mat(%5) : (tensor<?x?xf64, #DCSR>) -> ()
call @dump_mat_4x4(%6) : (tensor<4x4xf64, #DCSR>) -> ()
call @dump_mat_4x4(%7) : (tensor<4x4xf64, #DCSR>) -> ()
call @dump_mat_4x4(%8) : (tensor<4x4xf64, #DCSR>) -> ()
call @dump_mat_4x4(%9) : (tensor<4x4xf64, #DCSR>) -> ()
call @dump_mat_4x4_i8(%10) : (tensor<4x4xi8, #DCSR>) -> ()
call @dump_mat_4x4(%11) : (tensor<4x4xf64, #DCSR>) -> ()
sparse_tensor.print %sv1 : tensor<?xf64, #SparseVector>
sparse_tensor.print %sv2 : tensor<?xf64, #SparseVector>
sparse_tensor.print %0 : tensor<?xi32, #SparseVector>
sparse_tensor.print %1 : tensor<?xf64, #SparseVector>
sparse_tensor.print %2 : tensor<?xf64, #SparseVector>
sparse_tensor.print %3 : tensor<?xi32, #SparseVector>
sparse_tensor.print %5 : tensor<?x?xf64, #DCSR>
sparse_tensor.print %6 : tensor<4x4xf64, #DCSR>
sparse_tensor.print %7 : tensor<4x4xf64, #DCSR>
sparse_tensor.print %8 : tensor<4x4xf64, #DCSR>
sparse_tensor.print %9 : tensor<4x4xf64, #DCSR>
sparse_tensor.print %10 : tensor<4x4xi8, #DCSR>
sparse_tensor.print %11 : tensor<4x4xf64, #DCSR>

// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
Expand Down