-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][linalg] Add unit dim folding pattern for tensor.pad #84684
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Unit extent dims that are not padded by a tensor.pad can be folded away. When folding unit extent dims of surrounding linalg ops, this increases the chance that the iteration space of the linalg op will align with nearby pad ops, improving fusion opportunities.
@llvm/pr-subscribers-mlir-linalg @llvm/pr-subscribers-mlir Author: Quinn Dawkins (qedawkins) ChangesUnit extent dims that are not padded by a tensor.pad can be folded away. When folding unit extent dims of surrounding linalg ops, this increases the chance that the iteration space of the linalg op will align with nearby pad ops, improving fusion opportunities. Full diff: https://github.com/llvm/llvm-project/pull/84684.diff 3 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
index 65cf19e7a4fcd6..c64ecb79c5ca51 100644
--- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
@@ -481,6 +481,10 @@ struct ControlDropUnitDims {
if (auto genericOp = dyn_cast_or_null<GenericOp>(op)) {
return llvm::to_vector(llvm::seq<unsigned>(0, genericOp.getNumLoops()));
}
+ if (auto padOp = dyn_cast_or_null<tensor::PadOp>(op)) {
+ return llvm::to_vector(
+ llvm::seq<unsigned>(0, padOp.getSourceType().getRank()));
+ }
return SmallVector<unsigned>{};
};
};
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
index 45cab81be4f5ff..023ea277bcf499 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
@@ -561,6 +561,126 @@ struct DropUnitDims : public OpRewritePattern<GenericOp> {
};
} // namespace
+//===---------------------------------------------------------------------===//
+// Drop dimensions that are unit-extents within tensor operations.
+//===---------------------------------------------------------------------===//
+
+namespace {
+struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
+ DropPadUnitDims(MLIRContext *context, ControlDropUnitDims options = {},
+ PatternBenefit benefit = 1)
+ : OpRewritePattern(context, benefit), options(std::move(options)) {}
+
+ LogicalResult matchAndRewrite(tensor::PadOp padOp,
+ PatternRewriter &rewriter) const override {
+ // 1a. Get the allowed list of dimensions to drop from the `options`.
+ SmallVector<unsigned> allowedUnitDims = options.controlFn(padOp);
+ if (allowedUnitDims.empty()) {
+ return rewriter.notifyMatchFailure(
+ padOp, "control function returns no allowed unit dims to prune");
+ }
+
+ if (padOp.getSourceType().getEncoding()) {
+ return rewriter.notifyMatchFailure(
+ padOp, "cannot collapse dims of tensor with encoding");
+ }
+
+ // Fail for non-constant padding values. The body of the pad could
+ // depend on the padding indices and/or properties of the padded
+ // tensor so for now we fail.
+ // TODO: Support non-constant padding values.
+ Value paddingVal = padOp.getConstantPaddingValue();
+ if (!paddingVal) {
+ return rewriter.notifyMatchFailure(
+ padOp, "unimplemented: non-constant padding value");
+ }
+
+ ArrayRef<int64_t> sourceShape = padOp.getSourceType().getShape();
+ int64_t padRank = sourceShape.size();
+
+ auto isStaticZero = [](OpFoldResult f) {
+ std::optional<int64_t> maybeInt = getConstantIntValue(f);
+ return maybeInt && *maybeInt == 0;
+ };
+
+ llvm::SmallDenseSet<unsigned> unitDimsFilter(allowedUnitDims.begin(),
+ allowedUnitDims.end());
+ llvm::SmallDenseSet<unsigned> unitDims;
+ SmallVector<int64_t> newShape;
+ SmallVector<OpFoldResult> newLowPad;
+ SmallVector<OpFoldResult> newHighPad;
+ for (const auto [dim, size, low, high] :
+ zip_equal(llvm::seq(static_cast<int64_t>(0), padRank), sourceShape,
+ padOp.getMixedLowPad(), padOp.getMixedHighPad())) {
+ if (unitDimsFilter.contains(dim) && size == 1 && isStaticZero(low) &&
+ isStaticZero(high)) {
+ unitDims.insert(dim);
+ } else {
+ newShape.push_back(size);
+ newLowPad.push_back(low);
+ newHighPad.push_back(high);
+ }
+ }
+
+ if (unitDims.empty()) {
+ return rewriter.notifyMatchFailure(padOp, "no unit dims to collapse");
+ }
+
+ ReassociationIndices reassociationGroup;
+ SmallVector<ReassociationIndices> reassociationMap;
+ int64_t dim = 0;
+ while (dim < padRank && unitDims.contains(dim))
+ reassociationGroup.push_back(dim++);
+ while (dim < padRank) {
+ assert(!unitDims.contains(dim) && "expected non unit-extent");
+ reassociationGroup.push_back(dim);
+ dim++;
+ // Fold all following dimensions that are unit-extent.
+ while (dim < padRank && unitDims.contains(dim))
+ reassociationGroup.push_back(dim++);
+ reassociationMap.push_back(reassociationGroup);
+ reassociationGroup.clear();
+ }
+
+ Value collapsedSource =
+ collapseValue(rewriter, padOp.getLoc(), padOp.getSource(), newShape,
+ reassociationMap, options.rankReductionStrategy);
+
+ auto newPadOp = rewriter.create<tensor::PadOp>(
+ padOp.getLoc(), /*result=*/Type(), collapsedSource, newLowPad,
+ newHighPad, paddingVal, padOp.getNofold());
+
+ Value dest = padOp.getResult();
+ if (options.rankReductionStrategy ==
+ ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice) {
+ SmallVector<OpFoldResult> expandedSizes;
+ int64_t numUnitDims = 0;
+ for (auto dim : llvm::seq(static_cast<int64_t>(0), padRank)) {
+ if (unitDims.contains(dim)) {
+ expandedSizes.push_back(rewriter.getIndexAttr(1));
+ numUnitDims++;
+ continue;
+ }
+ expandedSizes.push_back(tensor::getMixedSize(
+ rewriter, padOp.getLoc(), newPadOp, dim - numUnitDims));
+ }
+ dest = rewriter.create<tensor::EmptyOp>(
+ padOp.getLoc(), expandedSizes,
+ padOp.getResultType().getElementType());
+ }
+
+ Value expandedValue =
+ expandValue(rewriter, padOp.getLoc(), newPadOp.getResult(), dest,
+ reassociationMap, options.rankReductionStrategy);
+ rewriter.replaceOp(padOp, expandedValue);
+ return success();
+ }
+
+private:
+ ControlDropUnitDims options;
+};
+} // namespace
+
namespace {
/// Convert `extract_slice` operations to rank-reduced versions.
struct RankReducedExtractSliceOp
@@ -640,6 +760,7 @@ populateFoldUnitExtentDimsViaReshapesPatterns(RewritePatternSet &patterns,
ControlDropUnitDims &options) {
auto *context = patterns.getContext();
patterns.add<DropUnitDims>(context, options);
+ patterns.add<DropPadUnitDims>(context, options);
// TODO: Patterns unrelated to unit dim folding should be factored out.
patterns.add<RankReducedExtractSliceOp,
RankReducedInsertSliceOp<tensor::InsertSliceOp>,
@@ -661,6 +782,7 @@ populateFoldUnitExtentDimsViaSlicesPatterns(RewritePatternSet &patterns,
options.rankReductionStrategy =
ControlDropUnitDims::RankReductionStrategy::ExtractInsertSlice;
patterns.add<DropUnitDims>(context, options);
+ patterns.add<DropPadUnitDims>(context, options);
// TODO: Patterns unrelated to unit dim folding should be factored out.
linalg::FillOp::getCanonicalizationPatterns(patterns, context);
tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
diff --git a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
index 0c51a032df9016..f2c490b832076f 100644
--- a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
+++ b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
@@ -946,3 +946,90 @@ func.func @drop_all_loops(%arg0 : memref<1x1xf32, 3>) -> memref<1x1xf32, 3>
// CHECK-SLICES-LABEL: func @drop_all_loops
// CHECK-SLICES: memref.subview %{{.*}}[0, 0] [1, 1] [1, 1] : memref<1x1xf32, 3> to memref<f32, strided<[]>, 3>
// CHECK-SLICES: linalg.generic{{.*}}memref<f32, strided<[]>, 3>
+
+// -----
+
+func.func @drop_unit_pad_dims(%arg0: tensor<1x1x3x1x1xf32>) -> tensor<1x2x3x1x3xf32>
+{
+ %c0 = arith.constant 0 : index
+ %cst0 = arith.constant 0.0 : f32
+ %0 = tensor.pad %arg0 low[0, 1, 0, %c0, 0] high[0, 0, 0, %c0, 2] {
+ ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index, %arg5: index):
+ tensor.yield %cst0 : f32
+ } : tensor<1x1x3x1x1xf32> to tensor<1x2x3x1x3xf32>
+ return %0 : tensor<1x2x3x1x3xf32>
+}
+
+// CHECK-LABEL: func @drop_unit_pad_dims
+// CHECK: %[[COLLAPSE:.+]] = tensor.collapse_shape
+// CHECK-SAME: {{\[}}[0, 1], [2, 3], [4]{{\]}} : tensor<1x1x3x1x1xf32> into tensor<1x3x1xf32>
+// CHECK: %[[PADDED:.+]] = tensor.pad %[[COLLAPSE]] low[1, 0, 0] high[0, 0, 2]
+// CHECK: } : tensor<1x3x1xf32> to tensor<2x3x3xf32>
+// CHECK: tensor.expand_shape %[[PADDED]]
+// CHECK-SAME: {{\[}}[0, 1], [2, 3], [4]{{\]}} : tensor<2x3x3xf32> into tensor<1x2x3x1x3xf32>
+
+// CHECK-SLICES-LABEL: func @drop_unit_pad_dims
+// CHECK-SLICES: %[[EXTRACT:.+]] = tensor.extract_slice
+// CHECK-SLICES-SAME: [0, 0, 0, 0, 0] [1, 1, 3, 1, 1] [1, 1, 1, 1, 1] : tensor<1x1x3x1x1xf32> to tensor<1x3x1xf32>
+// CHECK-SLICES: %[[PADDED:.+]] = tensor.pad %[[EXTRACT]] low[1, 0, 0] high[0, 0, 2]
+// CHECK-SLICES: } : tensor<1x3x1xf32> to tensor<2x3x3xf32>
+// CHECK-SLICES: tensor.insert_slice %[[PADDED]]
+// CHECK-SLICES-SAME: [0, 0, 0, 0, 0] [1, 2, 3, 1, 3] [1, 1, 1, 1, 1] : tensor<2x3x3xf32> into tensor<1x2x3x1x3xf32>
+
+// -----
+
+func.func @drop_unit_pad_dynamic_dims(%arg0: tensor<1x?xf32>) -> tensor<1x?xf32>
+{
+ %c0 = arith.constant 0 : index
+ %cst0 = arith.constant 0.0 : f32
+ %0 = tensor.pad %arg0 low[0, 5] high[0, 6] {
+ ^bb0(%arg1: index, %arg2: index):
+ tensor.yield %cst0 : f32
+ } : tensor<1x?xf32> to tensor<1x?xf32>
+ return %0 : tensor<1x?xf32>
+}
+
+// CHECK-LABEL: func @drop_unit_pad_dynamic_dims
+// CHECK: %[[COLLAPSE:.+]] = tensor.collapse_shape
+// CHECK-SAME: {{\[}}[0, 1]{{\]}} : tensor<1x?xf32> into tensor<?xf32>
+// CHECK: %[[PADDED:.+]] = tensor.pad %[[COLLAPSE]] low[5] high[6]
+// CHECK: } : tensor<?xf32> to tensor<?xf32>
+// CHECK: tensor.expand_shape %[[PADDED]]
+// CHECK-SAME: {{\[}}[0, 1]{{\]}} : tensor<?xf32> into tensor<1x?xf32>
+
+// CHECK-SLICES: #[[$MAP:.+]] = affine_map<()[s0] -> (s0 + 11)>
+
+// CHECK-SLICES-LABEL: func @drop_unit_pad_dynamic_dims
+// CHECK-SLICES-SAME: %[[ARG0:[A-Za-z0-9]+]]: tensor<1x?xf32>
+// CHECK-SLICES: %[[DIM:.+]] = tensor.dim %[[ARG0]], %c1
+// CHECK-SLICES: %[[EXTRACT:.+]] = tensor.extract_slice
+// CHECK-SLICES-SAME: [0, 0] [1, %[[DIM]]] [1, 1] : tensor<1x?xf32> to tensor<?xf32>
+// CHECK-SLICES: %[[PADDED:.+]] = tensor.pad %[[EXTRACT]] low[5] high[6]
+// CHECK-SLICES: } : tensor<?xf32> to tensor<?xf32>
+// CHECK-SLICES: %[[PADDED_DIM:.+]] = affine.apply #[[$MAP]]()[%[[DIM]]]
+// CHECK-SLICES: %[[EMPTY:.+]] = tensor.empty(%[[PADDED_DIM]]) : tensor<1x?xf32>
+// CHECK-SLICES: tensor.insert_slice %[[PADDED]] into %[[EMPTY]]
+// CHECK-SLICES-SAME: [0, 0] [1, %[[PADDED_DIM]]] [1, 1] : tensor<?xf32> into tensor<1x?xf32>
+
+// -----
+
+func.func @do_not_drop_non_constant_padding(%arg0: tensor<1x1x3x1x1xf32>, %pad: f32) -> tensor<1x2x3x1x3xf32>
+{
+ %c0 = arith.constant 0 : index
+ %0 = tensor.pad %arg0 low[0, 1, 0, %c0, 0] high[0, 0, 0, %c0, 2] {
+ ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index, %arg5: index):
+ %0 = arith.index_cast %arg3 : index to i64
+ %1 = arith.sitofp %0 : i64 to f32
+ %add = arith.addf %pad, %1 : f32
+ tensor.yield %add : f32
+ } : tensor<1x1x3x1x1xf32> to tensor<1x2x3x1x3xf32>
+ return %0 : tensor<1x2x3x1x3xf32>
+}
+
+// CHECK-LABEL: func @do_not_drop_non_constant_padding
+// CHECK: tensor.pad %{{.*}} low[0, 1, 0, %c0, 0] high[0, 0, 0, %c0, 2]
+// CHECK: } : tensor<1x1x3x1x1xf32> to tensor<1x2x3x1x3xf32>
+
+// CHECK-SLICES-LABEL: func @do_not_drop_non_constant_padding
+// CHECK-SLICES: tensor.pad %{{.*}} low[0, 1, 0, %c0, 0] high[0, 0, 0, %c0, 2]
+// CHECK-SLICES: } : tensor<1x1x3x1x1xf32> to tensor<1x2x3x1x3xf32>
|
Unit extent dims that are not padded by a tensor.pad can be folded away. When folding unit extent dims of surrounding linalg ops, this increases the chance that the iteration space of the linalg op will align with nearby pad ops, improving fusion opportunities.