Skip to content

Add bit-precise overloads for builtin operators #84755

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions clang/docs/ReleaseNotes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -262,6 +262,9 @@ Bug Fixes in This Version
operator.
Fixes (#GH83267).

- Clang now correctly generates overloads for bit-precise integer types for
builtin operators in C++. Fixes #GH82998.

Bug Fixes to Compiler Builtins
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Expand Down
29 changes: 27 additions & 2 deletions clang/lib/Sema/SemaOverload.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -8516,6 +8516,9 @@ class BuiltinCandidateTypeSet {
/// candidates.
TypeSet MatrixTypes;

/// The set of _BitInt types that will be used in the built-in candidates.
TypeSet BitIntTypes;

/// A flag indicating non-record types are viable candidates
bool HasNonRecordTypes;

Expand Down Expand Up @@ -8564,6 +8567,7 @@ class BuiltinCandidateTypeSet {
}
llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }
llvm::iterator_range<iterator> bitint_types() { return BitIntTypes; }

bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
bool hasNonRecordTypes() { return HasNonRecordTypes; }
Expand Down Expand Up @@ -8735,6 +8739,9 @@ BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
} else if (Ty->isEnumeralType()) {
HasArithmeticOrEnumeralTypes = true;
EnumerationTypes.insert(Ty);
} else if (Ty->isBitIntType()) {
HasArithmeticOrEnumeralTypes = true;
BitIntTypes.insert(Ty);
} else if (Ty->isVectorType()) {
// We treat vector types as arithmetic types in many contexts as an
// extension.
Expand Down Expand Up @@ -8913,7 +8920,7 @@ class BuiltinOperatorOverloadBuilder {
SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
OverloadCandidateSet &CandidateSet;

static constexpr int ArithmeticTypesCap = 24;
static constexpr int ArithmeticTypesCap = 26;
SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;

// Define some indices used to iterate over the arithmetic types in
Expand Down Expand Up @@ -8955,6 +8962,20 @@ class BuiltinOperatorOverloadBuilder {
(S.Context.getAuxTargetInfo() &&
S.Context.getAuxTargetInfo()->hasInt128Type()))
ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);

/// We add candidates for the unique, unqualified _BitInt types present in
/// the candidate type set. The candidate set already handled ensuring the
/// type is unqualified and canonical, but because we're adding from N
/// different sets, we need to do some extra work to unique things. Insert
/// the candidates into a unique set, then move from that set into the list
/// of arithmetic types.
llvm::SmallSetVector<CanQualType, 2> BitIntCandidates;
llvm::for_each(CandidateTypes, [&BitIntCandidates](
BuiltinCandidateTypeSet &Candidate) {
for (QualType BitTy : Candidate.bitint_types())
BitIntCandidates.insert(CanQualType::CreateUnsafe(BitTy));
});
llvm::move(BitIntCandidates, std::back_inserter(ArithmeticTypes));
LastPromotedIntegralType = ArithmeticTypes.size();
LastPromotedArithmeticType = ArithmeticTypes.size();
// End of promoted types.
Expand All @@ -8975,7 +8996,11 @@ class BuiltinOperatorOverloadBuilder {
// End of integral types.
// FIXME: What about complex? What about half?

assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
// We don't know for sure how many bit-precise candidates were involved, so
// we subtract those from the total when testing whether we're under the
// cap or not.
assert(ArithmeticTypes.size() - BitIntCandidates.size() <=
ArithmeticTypesCap &&
"Enough inline storage for all arithmetic types.");
}

Expand Down
42 changes: 42 additions & 0 deletions clang/test/SemaCXX/overload-bitint.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
// RUN: %clang_cc1 -std=c++20 %s -verify
// expected-no-diagnostics

#include "Inputs/std-compare.h"

struct S {
_BitInt(12) a;

constexpr operator _BitInt(12)() const { return a; }
};

// None of these used to compile because we weren't adding _BitInt types to the
// overload set for builtin operators. See GH82998.
static_assert(S{10} < 11);
static_assert(S{10} <= 11);
static_assert(S{12} > 11);
static_assert(S{12} >= 11);
static_assert(S{10} == 10);
static_assert((S{10} <=> 10) == 0);
static_assert(S{10} != 11);
static_assert(S{10} + 0 == 10);
static_assert(S{10} - 0 == 10);
static_assert(S{10} * 1 == 10);
static_assert(S{10} / 1 == 10);
static_assert(S{10} % 1 == 0);
static_assert(S{10} << 0 == 10);
static_assert(S{10} >> 0 == 10);
static_assert((S{10} | 0) == 10);
static_assert((S{10} & 10) == 10);
static_assert((S{10} ^ 0) == 10);
static_assert(-S{10} == -10);
static_assert(+S{10} == +10);
static_assert(~S{10} == ~10);

struct A {
_BitInt(12) a;

bool operator==(const A&) const = default;
bool operator!=(const A&) const = default;
std::strong_ordering operator<=>(const A&) const = default;
};