Skip to content

[mlir][linalg] Add e2e test for linalg.mmt4d + pack/unpack #84964

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Mar 28, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
173 changes: 173 additions & 0 deletions mlir/test/Integration/Dialect/Linalg/CPU/pack-unpack-mmt4d.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule \
// DEFINE: -one-shot-bufferize="bufferize-function-boundaries" \
// DEFINE: -buffer-deallocation-pipeline="private-function-dynamic-ownership" \
// DEFINE: -cse -canonicalize -test-lower-to-llvm
// DEFINE: %{entry_point} = main
// DEFINE: %{run} = mlir-cpu-runner -e %{entry_point} -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils

// RUN: %{compile} | %{run} | FileCheck %s

/// End-to-end test for computing matrix-multiplication using linalg.mmt4d. In
/// particular, demonstrates how the following MLIR sequence (implemented in @mmt4d):
///
/// A_pack = tensor.pack A
/// B_pack = tensor.pack B
/// C_pack = tensor.pack C
/// out_pack = linalg.mmt4d(A_pack, B_pack, C_pack)
///
/// is equivalent to:
///
/// linalg.matmul(A, B, C)
///
/// (implemented in @matmul).

func.func @main() {
// Allocate and initialise the inputs
%A_alloc = tensor.empty() : tensor<7x16xi32>
%B_alloc = tensor.empty() : tensor<16x13xi32>

%three = arith.constant 3 : i32
%four = arith.constant 4 : i32
%A = linalg.fill ins(%three : i32) outs(%A_alloc : tensor<7x16xi32>) -> tensor<7x16xi32>
%B = linalg.fill ins(%four : i32) outs(%B_alloc : tensor<16x13xi32>) -> tensor<16x13xi32>
%C = arith.constant dense<[
[ 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85],
[ 2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86],
[ 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87],
[ 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88],
[ 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89],
[ 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90],
[ 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91]
]> : tensor<7x13xi32>

// Matrix multiplication via linalg.mmt4d
// CHECK: Unranked Memref
// CHECK: [193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277]
// CHECK: [194, 201, 208, 215, 222, 229, 236, 243, 250, 257, 264, 271, 278]
// CHECK: [195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279]
// CHECK: [196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280]
// CHECK: [197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281]
// CHECK: [198, 205, 212, 219, 226, 233, 240, 247, 254, 261, 268, 275, 282]
// CHECK: [199, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283]
%C_mmt4d = func.call @mmt4d(%A, %B, %C) : (tensor<7x16xi32>, tensor<16x13xi32>, tensor<7x13xi32>) -> tensor<7x13xi32>
%xf = tensor.cast %C_mmt4d : tensor<7x13xi32> to tensor<*xi32>
call @printMemrefI32(%xf) : (tensor<*xi32>) -> ()

// Matrix multiplication with linalg.matmul
// CHECK: Unranked Memref
// CHECK: [193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 263, 270, 277]
// CHECK: [194, 201, 208, 215, 222, 229, 236, 243, 250, 257, 264, 271, 278]
// CHECK: [195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279]
// CHECK: [196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280]
// CHECK: [197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281]
// CHECK: [198, 205, 212, 219, 226, 233, 240, 247, 254, 261, 268, 275, 282]
// CHECK: [199, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283]
%C_matmul = func.call @matmul(%A, %B, %C) : (tensor<7x16xi32>, tensor<16x13xi32>, tensor<7x13xi32>) -> tensor<7x13xi32>
%xf_2 = tensor.cast %C_matmul : tensor<7x13xi32> to tensor<*xi32>
call @printMemrefI32(%xf_2) : (tensor<*xi32>) -> ()

return
}

func.func private @matmul(%A: tensor<7x16xi32>, %B: tensor<16x13xi32>, %C: tensor<7x13xi32>) -> tensor<7x13xi32> {
%C_matmul = linalg.matmul ins(%A, %B: tensor<7x16xi32>, tensor<16x13xi32>)
outs(%C: tensor<7x13xi32>) -> tensor<7x13xi32>

return %C_matmul : tensor<7x13xi32>
}

func.func private @mmt4d(%A: tensor<7x16xi32>, %B: tensor<16x13xi32>, %C: tensor<7x13xi32>) -> tensor<7x13xi32> {
%zero = arith.constant 0 : i32

%A_pack_empty = tensor.empty() : tensor<2x16x8x1xi32>
%B_pack_empty = tensor.empty() : tensor<2x16x8x1xi32>
%C_pack_empty = tensor.empty() : tensor<2x2x8x8xi32>

// Pack matrices
%A_pack = tensor.pack %A padding_value(%zero : i32) inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %A_pack_empty : tensor<7x16xi32> -> tensor<2x16x8x1xi32>
%B_pack = tensor.pack %B padding_value(%zero : i32) outer_dims_perm = [1, 0] inner_dims_pos = [1, 0] inner_tiles = [8, 1] into %B_pack_empty : tensor<16x13xi32> -> tensor<2x16x8x1xi32>
%C_pack = tensor.pack %C padding_value(%zero : i32) outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %C_pack_empty : tensor<7x13xi32> -> tensor<2x2x8x8xi32>

// MMT4D
%mmt4d = linalg.mmt4d ins(%A_pack, %B_pack : tensor<2x16x8x1xi32>, tensor<2x16x8x1xi32>) outs(%C_pack : tensor<2x2x8x8xi32>) -> tensor<2x2x8x8xi32>

// Unpack output
%C_out_empty = tensor.empty() : tensor<7x13xi32>
%C_out_unpack = tensor.unpack %mmt4d outer_dims_perm = [0, 1] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %C_out_empty : tensor<2x2x8x8xi32> -> tensor<7x13xi32>

return %C_out_unpack : tensor<7x13xi32>
}

module @transforms attributes { transform.with_named_sequence } {
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.readonly}) {
%mmt4d = transform.collect_matching @match_mmt4d in %module : (!transform.any_op) -> (!transform.any_op)
%func = transform.get_parent_op %mmt4d {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">

// Step 1: Tile
// Tile parallel dims
%tiled_linalg_op_p, %loops:4 = transform.structured.tile_using_for %mmt4d[1, 1, 0, 8, 8, 0]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
// Tile reduction dims
%tiled_linalg_op_r, %loops2:2 = transform.structured.tile_using_for %tiled_linalg_op_p[0, 0, 1, 0, 0, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)

// Step 2: Vectorize
transform.structured.vectorize %tiled_linalg_op_r : !transform.any_op

// Step 3: Simplify
// vector.multi_reduction --> vector.contract
// Generates a 6-dim vector.contract with the dim matching the original MMT4D Op
// and with the following split into parallel and reduction dims:
// * parallel, parallel, reduction, parallel, parallel, reduction
transform.apply_patterns to %func {
transform.apply_patterns.vector.reduction_to_contract
// Reduce the rank of xfer ops. This transforms vector.contract to be
// more matmul-like and to enable the lowering to outer product Ops.
transform.apply_patterns.vector.transfer_permutation_patterns
} : !transform.op<"func.func">

// Hoisting and LICM - not strictly required
%func_h = transform.structured.hoist_redundant_vector_transfers %func
: (!transform.op<"func.func">) -> !transform.op<"func.func">
%all_loops = transform.structured.match interface{LoopLikeInterface} in %func_h
: (!transform.op<"func.func">) -> !transform.any_op
transform.apply_licm to %all_loops : !transform.any_op
transform.loop.hoist_loop_invariant_subsets %all_loops : !transform.any_op

// Simplify the 6-dim vector.contract into a 3-dim matmul-like
// vector.contract with the following split into parallel and reduction
// dims:
// * parallel, parallel, reduction
transform.apply_patterns to %func_h {
transform.apply_patterns.vector.reduction_to_contract
transform.apply_patterns.vector.cast_away_vector_leading_one_dim
transform.apply_patterns.canonicalization
} : !transform.op<"func.func">

// Step 4. Lower tensor.pack
%pack = transform.structured.match ops{["tensor.pack"]} in %func_h
: (!transform.op<"func.func">) -> !transform.op<"tensor.pack">
transform.structured.lower_pack %pack : (!transform.op<"tensor.pack">)
-> (!transform.op<"tensor.pad">, !transform.op<"tensor.expand_shape">, !transform.op<"linalg.transpose">)

// Step 5. Lower tensor.unpack
%unpack = transform.structured.match ops{["tensor.unpack"]} in %func_h
: (!transform.op<"func.func">) -> !transform.op<"tensor.unpack">
transform.structured.lower_unpack %unpack : (!transform.op<"tensor.unpack">)
-> (!transform.op<"tensor.empty">,
!transform.op<"linalg.transpose">,
!transform.op<"tensor.collapse_shape">,
!transform.op<"tensor.extract_slice">)
transform.yield
}

transform.named_sequence @match_mmt4d(
%entry: !transform.any_op {transform.readonly}) -> !transform.any_op {
transform.match.operation_name %entry ["linalg.mmt4d"] : !transform.any_op
transform.yield %entry : !transform.any_op
}
}

func.func private @printMemrefI32(%ptr : tensor<*xi32>)