-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][tensor] Make getMixedPadImpl return static values when possible. #85016
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
If low and high are constants (i.e., not attributes), users still prefer attributes. Otherwise, there could be failures in type inference.
@llvm/pr-subscribers-mlir-linalg @llvm/pr-subscribers-mlir Author: Han-Chung Wang (hanhanW) ChangesIf low and high are constants (i.e., not attributes), users still prefer attributes. Otherwise, there could be failures in type inference. A failure is introduced by 60e562d, see the drop_known_unit_constant_low_high test for more details. Full diff: https://github.com/llvm/llvm-project/pull/85016.diff 4 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td b/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
index 670202fe4372e6..cf7f3e89079c1c 100644
--- a/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
+++ b/mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
@@ -1364,7 +1364,7 @@ def Tensor_PadOp : Tensor_Op<"pad", [
unsigned count = staticAttrs.size();
for (unsigned idx = 0; idx < count; ++idx) {
if (ShapedType::isDynamic(staticAttrs[idx]))
- res.push_back(values[numDynamic++]);
+ res.push_back(getAsOpFoldResult(values[numDynamic++]));
else
res.push_back(builder.getI64IntegerAttr(staticAttrs[idx]));
}
diff --git a/mlir/test/Conversion/TensorToLinalg/tensor-ops-to-linalg.mlir b/mlir/test/Conversion/TensorToLinalg/tensor-ops-to-linalg.mlir
index 238c0c51312a6b..a0a676edceb745 100644
--- a/mlir/test/Conversion/TensorToLinalg/tensor-ops-to-linalg.mlir
+++ b/mlir/test/Conversion/TensorToLinalg/tensor-ops-to-linalg.mlir
@@ -22,7 +22,6 @@ func.func @generalize_pad_tensor_static_shape(%arg0: tensor<1x28x28x1xf32>) -> t
// CHECK-LABEL: func @generalize_pad_tensor_dynamic_shape(
// CHECK-SAME: %[[IN:.*]]: tensor<4x?x2x?xf32>,
// CHECK-SAME: %[[OFFSET:.*]]: index) -> tensor<4x?x?x?xf32> {
-// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK: %[[DIM1:.*]] = tensor.dim %[[IN]], %[[C1]] : tensor<4x?x2x?xf32>
@@ -33,7 +32,7 @@ func.func @generalize_pad_tensor_static_shape(%arg0: tensor<1x28x28x1xf32>) -> t
// CHECK: %[[OUT_DIM3:.*]] = arith.addi %[[DIM3]], %[[OFFSET]] : index
// CHECK: %[[INIT:.*]] = tensor.empty(%[[DIM1]], %[[OUT_DIM2]], %[[OUT_DIM3]]) : tensor<4x?x?x?xf32>
// CHECK: %[[FILL:.*]] = linalg.fill ins(%[[CST]] : f32) outs(%[[INIT]] : tensor<4x?x?x?xf32>) -> tensor<4x?x?x?xf32>
-// CHECK: %[[PADDED:.*]] = tensor.insert_slice %[[IN]] into %[[FILL]]{{\[}}%[[C0]], %[[C0]], %[[OFFSET]], %[[C0]]] [4, %[[DIM1]], 2, %[[DIM3]]] [1, 1, 1, 1] : tensor<4x?x2x?xf32> into tensor<4x?x?x?xf32>
+// CHECK: %[[PADDED:.*]] = tensor.insert_slice %[[IN]] into %[[FILL]][0, 0, %[[OFFSET]], 0] [4, %[[DIM1]], 2, %[[DIM3]]] [1, 1, 1, 1] : tensor<4x?x2x?xf32> into tensor<4x?x?x?xf32>
// CHECK: return %[[PADDED]] : tensor<4x?x?x?xf32>
// CHECK: }
func.func @generalize_pad_tensor_dynamic_shape(%arg0: tensor<4x?x2x?xf32>, %arg1: index) -> tensor<4x?x?x?xf32> {
diff --git a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
index f2c490b832076f..c140b6abcc37a2 100644
--- a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
+++ b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
@@ -1033,3 +1033,23 @@ func.func @do_not_drop_non_constant_padding(%arg0: tensor<1x1x3x1x1xf32>, %pad:
// CHECK-SLICES-LABEL: func @do_not_drop_non_constant_padding
// CHECK-SLICES: tensor.pad %{{.*}} low[0, 1, 0, %c0, 0] high[0, 0, 0, %c0, 2]
// CHECK-SLICES: } : tensor<1x1x3x1x1xf32> to tensor<1x2x3x1x3xf32>
+
+// -----
+
+func.func @drop_known_unit_constant_low_high(%arg0: tensor<1x383x128xf32>) -> tensor<1x384x128xf32> {
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ %cst = arith.constant 0.000000e+00 : f32
+ %padded = tensor.pad %arg0 low[%c0, %c1, %c0] high[%c0, %c0, %c0] {
+ ^bb0(%arg1: index, %arg2: index, %arg3: index):
+ tensor.yield %cst : f32
+ } : tensor<1x383x128xf32> to tensor<1x384x128xf32>
+ return %padded : tensor<1x384x128xf32>
+}
+// CHECK-LABEL: func @drop_known_unit_constant_low_high
+// CHECK: %[[COLLAPSE:.+]] = tensor.collapse_shape
+// CHECK-SAME: {{\[}}[0, 1], [2]] : tensor<1x383x128xf32> into tensor<383x128xf32>
+// CHECK: %[[PADDED:.+]] = tensor.pad %[[COLLAPSE]] low[1, 0] high[0, 0]
+// CHECK: } : tensor<383x128xf32> to tensor<384x128xf32>
+// CHECK: tensor.expand_shape %[[PADDED]]
+// CHECK-SAME: {{\[}}[0, 1], [2]] : tensor<384x128xf32> into tensor<1x384x128xf32>
diff --git a/mlir/test/Dialect/Linalg/generalize-pad-tensor.mlir b/mlir/test/Dialect/Linalg/generalize-pad-tensor.mlir
index ac0eb48fb37940..2beab31b613d54 100644
--- a/mlir/test/Dialect/Linalg/generalize-pad-tensor.mlir
+++ b/mlir/test/Dialect/Linalg/generalize-pad-tensor.mlir
@@ -19,7 +19,6 @@ func.func @generalize_pad_tensor_static_shape(%arg0: tensor<1x28x28x1xf32>) -> t
// CHECK-LABEL: func @generalize_pad_tensor_dynamic_shape(
// CHECK-SAME: %[[IN:.*]]: tensor<4x?x2x?xf32>,
// CHECK-SAME: %[[OFFSET:.*]]: index) -> tensor<4x?x?x?xf32> {
-// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
@@ -32,7 +31,7 @@ func.func @generalize_pad_tensor_static_shape(%arg0: tensor<1x28x28x1xf32>) -> t
// CHECK: %[[FILL:.*]] = linalg.fill ins(%[[CST]] : f32) outs(%[[INIT]] : tensor<4x?x?x?xf32>) -> tensor<4x?x?x?xf32>
// CHECK: %[[DIM1_1:.*]] = tensor.dim %[[IN]], %[[C1]] : tensor<4x?x2x?xf32>
// CHECK: %[[DIM3_1:.*]] = tensor.dim %[[IN]], %[[C3]] : tensor<4x?x2x?xf32>
-// CHECK: %[[PADDED:.*]] = tensor.insert_slice %[[IN]] into %[[FILL]]{{\[}}%[[C0]], %[[C0]], %[[OFFSET]], %[[C0]]] [4, %[[DIM1_1]], 2, %[[DIM3_1]]] [1, 1, 1, 1] : tensor<4x?x2x?xf32> into tensor<4x?x?x?xf32>
+// CHECK: %[[PADDED:.*]] = tensor.insert_slice %[[IN]] into %[[FILL]][0, 0, %[[OFFSET]], 0] [4, %[[DIM1_1]], 2, %[[DIM3_1]]] [1, 1, 1, 1] : tensor<4x?x2x?xf32> into tensor<4x?x?x?xf32>
// CHECK: return %[[PADDED]] : tensor<4x?x?x?xf32>
// CHECK: }
func.func @generalize_pad_tensor_dynamic_shape(%arg0: tensor<4x?x2x?xf32>, %arg1: index) -> tensor<4x?x?x?xf32> {
|
If low and high are constants (i.e., not attributes), users still prefer attributes. Otherwise, there could be failures in type inference. A failure is introduced by 60e562d, see the drop_known_unit_constant_low_high test for more details.