Skip to content

[MLIR][LLVM][SROA] Make GEP handling type agnostic #86950

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
241 changes: 182 additions & 59 deletions mlir/lib/Dialect/LLVMIR/IR/LLVMMemorySlot.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TypeSwitch.h"

#define DEBUG_TYPE "sroa"

using namespace mlir;

//===----------------------------------------------------------------------===//
Expand Down Expand Up @@ -431,29 +433,165 @@ DeletionKind LLVM::GEPOp::removeBlockingUses(
return DeletionKind::Delete;
}

static bool isFirstIndexZero(LLVM::GEPOp gep) {
IntegerAttr index =
llvm::dyn_cast_if_present<IntegerAttr>(gep.getIndices()[0]);
return index && index.getInt() == 0;
/// Returns the amount of bytes the provided GEP elements will offset the
/// pointer by. Returns nullopt if no constant offset could be computed.
static std::optional<uint64_t> gepToByteOffset(const DataLayout &dataLayout,
LLVM::GEPOp gep) {
// Collects all indices.
SmallVector<uint64_t> indices;
for (auto index : gep.getIndices()) {
auto constIndex = dyn_cast<IntegerAttr>(index);
if (!constIndex)
return {};
int64_t gepIndex = constIndex.getInt();
// Negative indices are not supported.
if (gepIndex < 0)
return {};
indices.push_back(gepIndex);
}

Type currentType = gep.getElemType();
uint64_t offset = indices[0] * dataLayout.getTypeSize(currentType);

for (uint64_t index : llvm::drop_begin(indices)) {
bool shouldCancel =
TypeSwitch<Type, bool>(currentType)
.Case([&](LLVM::LLVMArrayType arrayType) {
offset +=
index * dataLayout.getTypeSize(arrayType.getElementType());
currentType = arrayType.getElementType();
return false;
})
.Case([&](LLVM::LLVMStructType structType) {
ArrayRef<Type> body = structType.getBody();
assert(index < body.size() && "expected valid struct indexing");
for (uint32_t i : llvm::seq(index)) {
if (!structType.isPacked())
offset = llvm::alignTo(
offset, dataLayout.getTypeABIAlignment(body[i]));
offset += dataLayout.getTypeSize(body[i]);
}

// Align for the current type as well.
if (!structType.isPacked())
offset = llvm::alignTo(
offset, dataLayout.getTypeABIAlignment(body[index]));
currentType = body[index];
return false;
})
.Default([&](Type type) {
LLVM_DEBUG(llvm::dbgs()
<< "[sroa] Unsupported type for offset computations"
<< type << "\n");
return true;
});

if (shouldCancel)
return std::nullopt;
}

return offset;
}

namespace {
/// A struct that stores both the index into the aggregate type of the slot as
/// well as the corresponding byte offset in memory.
struct SubslotAccessInfo {
/// The parent slot's index that the access falls into.
uint32_t index;
/// The offset into the subslot of the access.
uint64_t subslotOffset;
};
} // namespace

/// Computes subslot access information for an access into `slot` with the given
/// offset.
/// Returns nullopt when the offset is out-of-bounds or when the access is into
/// the padding of `slot`.
static std::optional<SubslotAccessInfo>
getSubslotAccessInfo(const DestructurableMemorySlot &slot,
const DataLayout &dataLayout, LLVM::GEPOp gep) {
std::optional<uint64_t> offset = gepToByteOffset(dataLayout, gep);
if (!offset)
return {};

// Helper to check that a constant index is in the bounds of the GEP index
// representation. LLVM dialects's GEP arguments have a limited bitwidth, thus
// this additional check is necessary.
auto isOutOfBoundsGEPIndex = [](uint64_t index) {
return index >= (1 << LLVM::kGEPConstantBitWidth);
};

Type type = slot.elemType;
if (*offset >= dataLayout.getTypeSize(type))
return {};
return TypeSwitch<Type, std::optional<SubslotAccessInfo>>(type)
.Case([&](LLVM::LLVMArrayType arrayType)
-> std::optional<SubslotAccessInfo> {
// Find which element of the array contains the offset.
uint64_t elemSize = dataLayout.getTypeSize(arrayType.getElementType());
uint64_t index = *offset / elemSize;
if (isOutOfBoundsGEPIndex(index))
return {};
return SubslotAccessInfo{static_cast<uint32_t>(index),
*offset - (index * elemSize)};
})
.Case([&](LLVM::LLVMStructType structType)
-> std::optional<SubslotAccessInfo> {
uint64_t distanceToStart = 0;
// Walk over the elements of the struct to find in which of
// them the offset is.
for (auto [index, elem] : llvm::enumerate(structType.getBody())) {
uint64_t elemSize = dataLayout.getTypeSize(elem);
if (!structType.isPacked()) {
distanceToStart = llvm::alignTo(
distanceToStart, dataLayout.getTypeABIAlignment(elem));
// If the offset is in padding, cancel the rewrite.
if (offset < distanceToStart)
return {};
}

if (offset < distanceToStart + elemSize) {
if (isOutOfBoundsGEPIndex(index))
return {};
// The offset is within this element, stop iterating the
// struct and return the index.
return SubslotAccessInfo{static_cast<uint32_t>(index),
*offset - distanceToStart};
}

// The offset is not within this element, continue walking
// over the struct.
distanceToStart += elemSize;
}

return {};
});
}

/// Constructs a byte array type of the given size.
static LLVM::LLVMArrayType getByteArrayType(MLIRContext *context,
unsigned size) {
auto byteType = IntegerType::get(context, 8);
return LLVM::LLVMArrayType::get(context, byteType, size);
}

LogicalResult LLVM::GEPOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed,
const DataLayout &dataLayout) {
if (getBase() != slot.ptr)
return success();
if (slot.elemType != getElemType())
return failure();
if (!isFirstIndexZero(*this))
std::optional<uint64_t> gepOffset = gepToByteOffset(dataLayout, *this);
if (!gepOffset)
return failure();
// Dynamic indices can be out-of-bounds (even negative), so an access with
// dynamic indices can never be considered safe.
if (!getDynamicIndices().empty())
uint64_t slotSize = dataLayout.getTypeSize(slot.elemType);
// Check that the access is strictly inside the slot.
if (*gepOffset >= slotSize)
return failure();
Type reachedType = getResultPtrElementType();
if (!reachedType)
return failure();
mustBeSafelyUsed.emplace_back<MemorySlot>({getResult(), reachedType});
// Every access that remains in bounds of the remaining slot is considered
// legal.
mustBeSafelyUsed.emplace_back<MemorySlot>(
{getRes(), getByteArrayType(getContext(), slotSize - *gepOffset)});
return success();
}

Expand All @@ -464,60 +602,45 @@ bool LLVM::GEPOp::canRewire(const DestructurableMemorySlot &slot,
if (!isa<LLVM::LLVMPointerType>(getBase().getType()))
return false;

if (getBase() != slot.ptr || slot.elemType != getElemType())
return false;
if (!isFirstIndexZero(*this))
return false;
// Dynamic indices can be out-of-bounds (even negative), so an access with
// dynamic indices can never be properly rewired.
if (!getDynamicIndices().empty())
return false;
Type reachedType = getResultPtrElementType();
if (!reachedType || getIndices().size() < 2)
if (getBase() != slot.ptr)
return false;
auto firstLevelIndex = dyn_cast<IntegerAttr>(getIndices()[1]);
if (!firstLevelIndex)
std::optional<SubslotAccessInfo> accessInfo =
getSubslotAccessInfo(slot, dataLayout, *this);
if (!accessInfo)
return false;
mustBeSafelyUsed.emplace_back<MemorySlot>({getResult(), reachedType});
assert(slot.elementPtrs.contains(firstLevelIndex));
usedIndices.insert(firstLevelIndex);
auto indexAttr =
IntegerAttr::get(IntegerType::get(getContext(), 32), accessInfo->index);
assert(slot.elementPtrs.contains(indexAttr));
usedIndices.insert(indexAttr);

// The remainder of the subslot should be accesses in-bounds. Thus, we create
// a dummy slot with the size of the remainder.
Type subslotType = slot.elementPtrs.lookup(indexAttr);
uint64_t slotSize = dataLayout.getTypeSize(subslotType);
LLVM::LLVMArrayType remainingSlotType =
getByteArrayType(getContext(), slotSize - accessInfo->subslotOffset);
mustBeSafelyUsed.emplace_back<MemorySlot>({getRes(), remainingSlotType});

return true;
}

DeletionKind LLVM::GEPOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter,
const DataLayout &dataLayout) {
IntegerAttr firstLevelIndex =
llvm::dyn_cast_if_present<IntegerAttr>(getIndices()[1]);
const MemorySlot &newSlot = subslots.at(firstLevelIndex);

ArrayRef<int32_t> remainingIndices = getRawConstantIndices().slice(2);

// If the GEP would become trivial after this transformation, eliminate it.
// A GEP should only be eliminated if it has no indices (except the first
// pointer index), as simplifying GEPs with all-zero indices would eliminate
// structure information useful for further destruction.
if (remainingIndices.empty()) {
rewriter.replaceAllUsesWith(getResult(), newSlot.ptr);
return DeletionKind::Delete;
}

rewriter.modifyOpInPlace(*this, [&]() {
// Rewire the indices by popping off the second index.
// Start with a single zero, then add the indices beyond the second.
SmallVector<int32_t> newIndices(1);
newIndices.append(remainingIndices.begin(), remainingIndices.end());
setRawConstantIndices(newIndices);

// Rewire the pointed type.
setElemType(newSlot.elemType);

// Rewire the pointer.
getBaseMutable().assign(newSlot.ptr);
});

return DeletionKind::Keep;
std::optional<SubslotAccessInfo> accessInfo =
getSubslotAccessInfo(slot, dataLayout, *this);
assert(accessInfo && "expected access info to be checked before");
auto indexAttr =
IntegerAttr::get(IntegerType::get(getContext(), 32), accessInfo->index);
const MemorySlot &newSlot = subslots.at(indexAttr);

auto byteType = IntegerType::get(rewriter.getContext(), 8);
auto newPtr = rewriter.createOrFold<LLVM::GEPOp>(
getLoc(), getResult().getType(), byteType, newSlot.ptr,
ArrayRef<GEPArg>(accessInfo->subslotOffset), getInbounds());
rewriter.replaceAllUsesWith(getResult(), newPtr);
return DeletionKind::Delete;
}

//===----------------------------------------------------------------------===//
Expand Down
Loading