Skip to content

[SPIR-V] Fix validity of atomic instructions #87051

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions llvm/lib/Target/SPIRV/SPIRVCallLowering.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -251,6 +251,13 @@ static SPIRVType *getArgSPIRVType(const Function &F, unsigned ArgIdx,
cast<ConstantInt>(II->getOperand(2))->getZExtValue(), ST));
}

// Replace PointerType with TypedPointerType to be able to map SPIR-V types to
// LLVM types in a consistent manner
if (isUntypedPointerTy(OriginalArgType)) {
OriginalArgType =
TypedPointerType::get(Type::getInt8Ty(F.getContext()),
getPointerAddressSpace(OriginalArgType));
}
return GR->getOrCreateSPIRVType(OriginalArgType, MIRBuilder, ArgAccessQual);
}

Expand Down
89 changes: 79 additions & 10 deletions llvm/lib/Target/SPIRV/SPIRVEmitIntrinsics.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,10 @@ class SPIRVEmitIntrinsics
Type *deduceElementType(Value *I);
Type *deduceElementTypeHelper(Value *I);
Type *deduceElementTypeHelper(Value *I, std::unordered_set<Value *> &Visited);
Type *deduceElementTypeByValueDeep(Type *ValueTy, Value *Operand,
std::unordered_set<Value *> &Visited);
Type *deduceElementTypeByUsersDeep(Value *Op,
std::unordered_set<Value *> &Visited);

// deduce nested types of composites
Type *deduceNestedTypeHelper(User *U);
Expand Down Expand Up @@ -176,6 +180,44 @@ static inline void reportFatalOnTokenType(const Instruction *I) {
false);
}

// Set element pointer type to the given value of ValueTy and tries to
// specify this type further (recursively) by Operand value, if needed.
Type *SPIRVEmitIntrinsics::deduceElementTypeByValueDeep(
Type *ValueTy, Value *Operand, std::unordered_set<Value *> &Visited) {
Type *Ty = ValueTy;
if (Operand) {
if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
if (Type *NestedTy = deduceElementTypeHelper(Operand, Visited))
Ty = TypedPointerType::get(NestedTy, PtrTy->getAddressSpace());
} else {
Ty = deduceNestedTypeHelper(dyn_cast<User>(Operand), Ty, Visited);
}
}
return Ty;
}

// Traverse User instructions to deduce an element pointer type of the operand.
Type *SPIRVEmitIntrinsics::deduceElementTypeByUsersDeep(
Value *Op, std::unordered_set<Value *> &Visited) {
if (!Op || !isPointerTy(Op->getType()))
return nullptr;

if (auto PType = dyn_cast<TypedPointerType>(Op->getType()))
return PType->getElementType();

// maybe we already know operand's element type
if (Type *KnownTy = GR->findDeducedElementType(Op))
return KnownTy;

for (User *OpU : Op->users()) {
if (Instruction *Inst = dyn_cast<Instruction>(OpU)) {
if (Type *Ty = deduceElementTypeHelper(Inst, Visited))
return Ty;
}
}
return nullptr;
}

// Deduce and return a successfully deduced Type of the Instruction,
// or nullptr otherwise.
Type *SPIRVEmitIntrinsics::deduceElementTypeHelper(Value *I) {
Expand Down Expand Up @@ -206,21 +248,27 @@ Type *SPIRVEmitIntrinsics::deduceElementTypeHelper(
} else if (auto *Ref = dyn_cast<GetElementPtrInst>(I)) {
Ty = Ref->getResultElementType();
} else if (auto *Ref = dyn_cast<GlobalValue>(I)) {
Ty = Ref->getValueType();
if (Value *Op = Ref->getNumOperands() > 0 ? Ref->getOperand(0) : nullptr) {
if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
if (Type *NestedTy = deduceElementTypeHelper(Op, Visited))
Ty = TypedPointerType::get(NestedTy, PtrTy->getAddressSpace());
} else {
Ty = deduceNestedTypeHelper(dyn_cast<User>(Op), Ty, Visited);
}
}
Ty = deduceElementTypeByValueDeep(
Ref->getValueType(),
Ref->getNumOperands() > 0 ? Ref->getOperand(0) : nullptr, Visited);
} else if (auto *Ref = dyn_cast<AddrSpaceCastInst>(I)) {
Ty = deduceElementTypeHelper(Ref->getPointerOperand(), Visited);
} else if (auto *Ref = dyn_cast<BitCastInst>(I)) {
if (Type *Src = Ref->getSrcTy(), *Dest = Ref->getDestTy();
isPointerTy(Src) && isPointerTy(Dest))
Ty = deduceElementTypeHelper(Ref->getOperand(0), Visited);
} else if (auto *Ref = dyn_cast<AtomicCmpXchgInst>(I)) {
Value *Op = Ref->getNewValOperand();
Ty = deduceElementTypeByValueDeep(Op->getType(), Op, Visited);
} else if (auto *Ref = dyn_cast<AtomicRMWInst>(I)) {
Value *Op = Ref->getValOperand();
Ty = deduceElementTypeByValueDeep(Op->getType(), Op, Visited);
} else if (auto *Ref = dyn_cast<PHINode>(I)) {
for (unsigned i = 0; i < Ref->getNumIncomingValues(); i++) {
Ty = deduceElementTypeByUsersDeep(Ref->getIncomingValue(i), Visited);
if (Ty)
break;
}
}

// remember the found relationship
Expand Down Expand Up @@ -293,6 +341,22 @@ Type *SPIRVEmitIntrinsics::deduceNestedTypeHelper(
return NewTy;
}
}
} else if (auto *VecTy = dyn_cast<VectorType>(OrigTy)) {
if (Value *Op = U->getNumOperands() > 0 ? U->getOperand(0) : nullptr) {
Type *OpTy = VecTy->getElementType();
Type *Ty = OpTy;
if (auto *PtrTy = dyn_cast<PointerType>(OpTy)) {
if (Type *NestedTy = deduceElementTypeHelper(Op, Visited))
Ty = TypedPointerType::get(NestedTy, PtrTy->getAddressSpace());
} else {
Ty = deduceNestedTypeHelper(dyn_cast<User>(Op), OpTy, Visited);
}
if (Ty != OpTy) {
Type *NewTy = VectorType::get(Ty, VecTy->getElementCount());
GR->addDeducedCompositeType(U, NewTy);
return NewTy;
}
}
}

return OrigTy;
Expand Down Expand Up @@ -578,7 +642,8 @@ void SPIRVEmitIntrinsics::insertPtrCastOrAssignTypeInstr(Instruction *I,

// Handle calls to builtins (non-intrinsics):
CallInst *CI = dyn_cast<CallInst>(I);
if (!CI || CI->isIndirectCall() || CI->getCalledFunction()->isIntrinsic())
if (!CI || CI->isIndirectCall() || CI->isInlineAsm() ||
!CI->getCalledFunction() || CI->getCalledFunction()->isIntrinsic())
return;

// collect information about formal parameter types
Expand Down Expand Up @@ -929,6 +994,10 @@ Type *SPIRVEmitIntrinsics::deduceFunParamElementType(
// maybe we already know operand's element type
if (Type *KnownTy = GR->findDeducedElementType(OpArg))
return KnownTy;
// try to deduce from the operand itself
Visited.clear();
if (Type *Ty = deduceElementTypeHelper(OpArg, Visited))
return Ty;
// search in actual parameter's users
for (User *OpU : OpArg->users()) {
Instruction *Inst = dyn_cast<Instruction>(OpU);
Expand Down
42 changes: 42 additions & 0 deletions llvm/lib/Target/SPIRV/SPIRVISelLowering.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -201,6 +201,17 @@ void validateForwardCalls(const SPIRVSubtarget &STI,
}
}

// Validation of an access chain.
void validateAccessChain(const SPIRVSubtarget &STI, MachineRegisterInfo *MRI,
SPIRVGlobalRegistry &GR, MachineInstr &I) {
SPIRVType *BaseTypeInst = GR.getSPIRVTypeForVReg(I.getOperand(0).getReg());
if (BaseTypeInst && BaseTypeInst->getOpcode() == SPIRV::OpTypePointer) {
SPIRVType *BaseElemType =
GR.getSPIRVTypeForVReg(BaseTypeInst->getOperand(2).getReg());
validatePtrTypes(STI, MRI, GR, I, 2, BaseElemType);
}
}

// TODO: the logic of inserting additional bitcast's is to be moved
// to pre-IRTranslation passes eventually
void SPIRVTargetLowering::finalizeLowering(MachineFunction &MF) const {
Expand All @@ -213,16 +224,47 @@ void SPIRVTargetLowering::finalizeLowering(MachineFunction &MF) const {
MBBI != MBBE;) {
MachineInstr &MI = *MBBI++;
switch (MI.getOpcode()) {
case SPIRV::OpAtomicLoad:
case SPIRV::OpAtomicExchange:
case SPIRV::OpAtomicCompareExchange:
case SPIRV::OpAtomicCompareExchangeWeak:
case SPIRV::OpAtomicIIncrement:
case SPIRV::OpAtomicIDecrement:
case SPIRV::OpAtomicIAdd:
case SPIRV::OpAtomicISub:
case SPIRV::OpAtomicSMin:
case SPIRV::OpAtomicUMin:
case SPIRV::OpAtomicSMax:
case SPIRV::OpAtomicUMax:
case SPIRV::OpAtomicAnd:
case SPIRV::OpAtomicOr:
case SPIRV::OpAtomicXor:
// for the above listed instructions
// OpAtomicXXX <ResType>, ptr %Op, ...
// implies that %Op is a pointer to <ResType>
case SPIRV::OpLoad:
// OpLoad <ResType>, ptr %Op implies that %Op is a pointer to <ResType>
validatePtrTypes(STI, MRI, GR, MI, 2,
GR.getSPIRVTypeForVReg(MI.getOperand(0).getReg()));
break;
case SPIRV::OpAtomicStore:
// OpAtomicStore ptr %Op, <Scope>, <Mem>, <Obj>
// implies that %Op points to the <Obj>'s type
validatePtrTypes(STI, MRI, GR, MI, 0,
GR.getSPIRVTypeForVReg(MI.getOperand(3).getReg()));
break;
case SPIRV::OpStore:
// OpStore ptr %Op, <Obj> implies that %Op points to the <Obj>'s type
validatePtrTypes(STI, MRI, GR, MI, 0,
GR.getSPIRVTypeForVReg(MI.getOperand(1).getReg()));
break;
case SPIRV::OpPtrCastToGeneric:
validateAccessChain(STI, MRI, GR, MI);
break;
case SPIRV::OpInBoundsPtrAccessChain:
if (MI.getNumOperands() == 4)
validateAccessChain(STI, MRI, GR, MI);
break;

case SPIRV::OpFunctionCall:
// ensure there is no mismatch between actual and expected arg types:
Expand Down
1 change: 1 addition & 0 deletions llvm/test/CodeGen/SPIRV/ExecutionMode.ll
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
; RUN: llc -O0 -mtriple=spirv32-unknown-unknown %s -o - | FileCheck %s
; RUN: %if spirv-tools %{ llc -O0 -mtriple=spirv32-unknown-unknown %s -o - -filetype=obj | spirv-val %}

; CHECK-DAG: %[[#VOID:]] = OpTypeVoid

Expand Down
28 changes: 19 additions & 9 deletions llvm/test/CodeGen/SPIRV/instructions/atomic.ll
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
; RUN: llc -O0 -mtriple=spirv32-unknown-unknown %s -o - | FileCheck %s
; RUN: %if spirv-tools %{ llc -O0 -mtriple=spirv32-unknown-unknown %s -o - -filetype=obj | spirv-val %}

; CHECK-DAG: OpName [[ADD:%.*]] "test_add"
; CHECK-DAG: OpName [[SUB:%.*]] "test_sub"
Expand All @@ -20,7 +21,8 @@
; CHECK-NEXT: [[A:%.*]] = OpFunctionParameter
; CHECK-NEXT: [[B:%.*]] = OpFunctionParameter
; CHECK-NEXT: OpLabel
; CHECK-NEXT: [[R:%.*]] = OpAtomicIAdd [[I32Ty]] [[A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: [[BC_A:%.*]] = OpBitcast %[[#]] [[A]]
; CHECK-NEXT: [[R:%.*]] = OpAtomicIAdd [[I32Ty]] [[BC_A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: OpReturnValue [[R]]
; CHECK-NEXT: OpFunctionEnd
define i32 @test_add(i32* %ptr, i32 %val) {
Expand All @@ -32,7 +34,8 @@ define i32 @test_add(i32* %ptr, i32 %val) {
; CHECK-NEXT: [[A:%.*]] = OpFunctionParameter
; CHECK-NEXT: [[B:%.*]] = OpFunctionParameter
; CHECK-NEXT: OpLabel
; CHECK-NEXT: [[R:%.*]] = OpAtomicISub [[I32Ty]] [[A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: [[BC_A:%.*]] = OpBitcast %[[#]] [[A]]
; CHECK-NEXT: [[R:%.*]] = OpAtomicISub [[I32Ty]] [[BC_A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: OpReturnValue [[R]]
; CHECK-NEXT: OpFunctionEnd
define i32 @test_sub(i32* %ptr, i32 %val) {
Expand All @@ -44,7 +47,8 @@ define i32 @test_sub(i32* %ptr, i32 %val) {
; CHECK-NEXT: [[A:%.*]] = OpFunctionParameter
; CHECK-NEXT: [[B:%.*]] = OpFunctionParameter
; CHECK-NEXT: OpLabel
; CHECK-NEXT: [[R:%.*]] = OpAtomicSMin [[I32Ty]] [[A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: [[BC_A:%.*]] = OpBitcast %[[#]] [[A]]
; CHECK-NEXT: [[R:%.*]] = OpAtomicSMin [[I32Ty]] [[BC_A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: OpReturnValue [[R]]
; CHECK-NEXT: OpFunctionEnd
define i32 @test_min(i32* %ptr, i32 %val) {
Expand All @@ -56,7 +60,8 @@ define i32 @test_min(i32* %ptr, i32 %val) {
; CHECK-NEXT: [[A:%.*]] = OpFunctionParameter
; CHECK-NEXT: [[B:%.*]] = OpFunctionParameter
; CHECK-NEXT: OpLabel
; CHECK-NEXT: [[R:%.*]] = OpAtomicSMax [[I32Ty]] [[A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: [[BC_A:%.*]] = OpBitcast %[[#]] [[A]]
; CHECK-NEXT: [[R:%.*]] = OpAtomicSMax [[I32Ty]] [[BC_A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: OpReturnValue [[R]]
; CHECK-NEXT: OpFunctionEnd
define i32 @test_max(i32* %ptr, i32 %val) {
Expand All @@ -68,7 +73,8 @@ define i32 @test_max(i32* %ptr, i32 %val) {
; CHECK-NEXT: [[A:%.*]] = OpFunctionParameter
; CHECK-NEXT: [[B:%.*]] = OpFunctionParameter
; CHECK-NEXT: OpLabel
; CHECK-NEXT: [[R:%.*]] = OpAtomicUMin [[I32Ty]] [[A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: [[BC_A:%.*]] = OpBitcast %[[#]] [[A]]
; CHECK-NEXT: [[R:%.*]] = OpAtomicUMin [[I32Ty]] [[BC_A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: OpReturnValue [[R]]
; CHECK-NEXT: OpFunctionEnd
define i32 @test_umin(i32* %ptr, i32 %val) {
Expand All @@ -80,7 +86,8 @@ define i32 @test_umin(i32* %ptr, i32 %val) {
; CHECK-NEXT: [[A:%.*]] = OpFunctionParameter
; CHECK-NEXT: [[B:%.*]] = OpFunctionParameter
; CHECK-NEXT: OpLabel
; CHECK-NEXT: [[R:%.*]] = OpAtomicUMax [[I32Ty]] [[A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: [[BC_A:%.*]] = OpBitcast %[[#]] [[A]]
; CHECK-NEXT: [[R:%.*]] = OpAtomicUMax [[I32Ty]] [[BC_A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: OpReturnValue [[R]]
; CHECK-NEXT: OpFunctionEnd
define i32 @test_umax(i32* %ptr, i32 %val) {
Expand All @@ -92,7 +99,8 @@ define i32 @test_umax(i32* %ptr, i32 %val) {
; CHECK-NEXT: [[A:%.*]] = OpFunctionParameter
; CHECK-NEXT: [[B:%.*]] = OpFunctionParameter
; CHECK-NEXT: OpLabel
; CHECK-NEXT: [[R:%.*]] = OpAtomicAnd [[I32Ty]] [[A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: [[BC_A:%.*]] = OpBitcast %[[#]] [[A]]
; CHECK-NEXT: [[R:%.*]] = OpAtomicAnd [[I32Ty]] [[BC_A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: OpReturnValue [[R]]
; CHECK-NEXT: OpFunctionEnd
define i32 @test_and(i32* %ptr, i32 %val) {
Expand All @@ -104,7 +112,8 @@ define i32 @test_and(i32* %ptr, i32 %val) {
; CHECK-NEXT: [[A:%.*]] = OpFunctionParameter
; CHECK-NEXT: [[B:%.*]] = OpFunctionParameter
; CHECK-NEXT: OpLabel
; CHECK-NEXT: [[R:%.*]] = OpAtomicOr [[I32Ty]] [[A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: [[BC_A:%.*]] = OpBitcast %[[#]] [[A]]
; CHECK-NEXT: [[R:%.*]] = OpAtomicOr [[I32Ty]] [[BC_A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: OpReturnValue [[R]]
; CHECK-NEXT: OpFunctionEnd
define i32 @test_or(i32* %ptr, i32 %val) {
Expand All @@ -116,7 +125,8 @@ define i32 @test_or(i32* %ptr, i32 %val) {
; CHECK-NEXT: [[A:%.*]] = OpFunctionParameter
; CHECK-NEXT: [[B:%.*]] = OpFunctionParameter
; CHECK-NEXT: OpLabel
; CHECK-NEXT: [[R:%.*]] = OpAtomicXor [[I32Ty]] [[A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: [[BC_A:%.*]] = OpBitcast %[[#]] [[A]]
; CHECK-NEXT: [[R:%.*]] = OpAtomicXor [[I32Ty]] [[BC_A]] [[SCOPE]] [[RELAXED]] [[B]]
; CHECK-NEXT: OpReturnValue [[R]]
; CHECK-NEXT: OpFunctionEnd
define i32 @test_xor(i32* %ptr, i32 %val) {
Expand Down
Loading