-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][nvgpu] Simplify TMA IR generation #87153
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-gpu Author: Guray Ozen (grypp) ChangesThis PR add Full diff: https://github.com/llvm/llvm-project/pull/87153.diff 1 Files Affected:
diff --git a/mlir/test/Integration/GPU/CUDA/sm90/python/tools/matmulBuilder.py b/mlir/test/Integration/GPU/CUDA/sm90/python/tools/matmulBuilder.py
index fac138dce605a7..6823587801a7b0 100644
--- a/mlir/test/Integration/GPU/CUDA/sm90/python/tools/matmulBuilder.py
+++ b/mlir/test/Integration/GPU/CUDA/sm90/python/tools/matmulBuilder.py
@@ -28,6 +28,43 @@
DEBUG = False
+class TmaDescriptorBuilder:
+ """A class that builds a TMA descriptor."""
+
+ def __init__(self, swizzle, l2promo, oob, interleave, tma_box_shape, memref_ty):
+ self.swizzle = swizzle # mlir.nvgpu.TensorMapSwizzleKind
+ self.l2promo = l2promo # mlir.nvgpu.TensorMapL2PromoKind
+ self.oob = oob # mlir.nvgpu.TensorMapOOBKind
+ self.interleave = interleave # mlir.nvgpu.TensorMapInterleaveKind
+ self.tma_box_shape = tma_box_shape
+ self.memref_ty = memref_ty # MemRefType
+
+ @property
+ def tensormap_descriptor_ty(self):
+ """Returns a tensormap descriptor type."""
+ memref_str = f"memref<{self.tma_box_shape[0]}x{self.tma_box_shape[1]}x{self.memref_ty.element_type}, 3>"
+ parse_str = f"!nvgpu.tensormap.descriptor<tensor = {memref_str},\
+ swizzle = {self.swizzle},\
+ l2promo = {self.l2promo},\
+ oob = {self.oob},\
+ interleave = {self.interleave}>"
+ return ir.Type.parse(parse_str)
+
+ def tma_descriptor_op(self, device_ptr):
+ """Returns a tensormap descriptor op."""
+ tma_descriptor_ty = self.tensormap_descriptor_ty
+ device_unranked_memref = memref.CastOp(
+ ir.UnrankedMemRefType.get(
+ self.memref_ty.element_type, self.memref_ty.memory_space
+ ),
+ device_ptr,
+ )
+ tma_descriptor_op = nvgpu.TmaCreateDescriptorOp(
+ tma_descriptor_ty, device_unranked_memref, map(c, self.tma_box_shape)
+ )
+ return tma_descriptor_op.result
+
+
def debug_print(fmt, *args, predicate=None, threadNumber=-1, forcePrint=False):
if not DEBUG and not forcePrint:
return
@@ -162,28 +199,6 @@ def generate_matmul_ws(
+ str(num_stages)
+ ">"
)
- a_tma_desc_ty = ir.Type.parse(
- "!nvgpu.tensormap.descriptor<tensor = memref<"
- + str(BLOCK_M)
- + "x"
- + str(TMA_LAST_DIM_F16)
- + "x"
- + str(a_elem_ty)
- + ", "
- + str(smem_space)
- + ">, swizzle = swizzle_128b, l2promo=none, oob=zero, interleave=none>"
- )
- b_tma_desc_ty = ir.Type.parse(
- "!nvgpu.tensormap.descriptor<tensor = memref<"
- + str(BLOCK_K)
- + "x"
- + str(TMA_LAST_DIM_F16)
- + "x"
- + str(b_elem_ty)
- + ", "
- + str(smem_space)
- + ">, swizzle = swizzle_128b, l2promo=none, oob=zero, interleave=none>"
- )
acc_ty = ir.Type.parse(
"!nvgpu.warpgroup.accumulator<fragmented=vector<"
+ str(BLOCK_M)
@@ -240,21 +255,26 @@ def generate_matmul_ws(
t7 = gpu.wait(token_ty, [t6])
# Step 2. Create TMA Descriptors
- tma_specs = [
- (a_device, a_tma_desc_ty, a_tma_shape),
- (b_device, b_tma_desc_ty, b_tma_shape),
- ]
- tma_descs = []
- for x_device, tensor_map_ty, tile_shape in tma_specs:
- x_unranked = memref.cast(
- ir.UnrankedMemRefType.get(a_elem_ty, a_ty.memory_space), x_device
- )
- tma_descs.append(
- nvgpu.TmaCreateDescriptorOp(
- tensor_map_ty, x_unranked, map(c, tile_shape)
- ).result
- )
- a_tma_desc, b_tma_desc = tma_descs
+ a_tma_desc = TmaDescriptorBuilder(
+ nvgpu.TensorMapSwizzleKind.SWIZZLE_128B,
+ nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
+ nvgpu.TensorMapOOBKind.OOB_ZERO,
+ nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
+ a_tma_shape,
+ a_ty,
+ )
+
+ b_tma_desc = TmaDescriptorBuilder(
+ nvgpu.TensorMapSwizzleKind.SWIZZLE_128B,
+ nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
+ nvgpu.TensorMapOOBKind.OOB_ZERO,
+ nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
+ b_tma_shape,
+ b_ty,
+ )
+
+ a_tma_desc_op = a_tma_desc.tma_descriptor_op(a_device)
+ b_tma_desc_op = b_tma_desc.tma_descriptor_op(b_device)
# Step 3. Launch Kernel with 2 Warpgroups : 1 Producer, 1 Consumer
cta_m = M // BLOCK_M
@@ -267,7 +287,7 @@ def generate_matmul_ws(
[t7],
*map(c, grid),
*map(c, block),
- dynamicSharedMemorySize=c(smem_size, ty=T.i32())
+ dynamicSharedMemorySize=c(smem_size, ty=T.i32()),
)
launch_op.body.blocks.append(*([T.index()] * 12))
with ir.InsertionPoint(launch_op.body.blocks[0]):
@@ -315,8 +335,8 @@ def generate_matmul_ws(
gpu.barrier()
# GPU Step 3. Prefetch TMA descriptors
- nvgpu.tma_prefetch_descriptor(a_tma_desc, predicate=wgPrimaryThread)
- nvgpu.tma_prefetch_descriptor(b_tma_desc, predicate=wgPrimaryThread)
+ nvgpu.tma_prefetch_descriptor(a_tma_desc_op, predicate=wgPrimaryThread)
+ nvgpu.tma_prefetch_descriptor(b_tma_desc_op, predicate=wgPrimaryThread)
ns = num_stages if num_stages == 1 else num_stages - 1
# GPU Step 5. Producer Warpgroup (TMA Warpgroup)
@@ -405,7 +425,7 @@ def generate_matmul_ws(
nvgpu.TmaAsyncLoadOp(
a_tma_slice,
mbarTMA,
- a_tma_desc,
+ a_tma_desc_op,
coordinates=[coord, dimX],
mbarId=stage,
predicate=producerPrimaryThread,
@@ -413,7 +433,7 @@ def generate_matmul_ws(
nvgpu.TmaAsyncLoadOp(
b_tma_slice_1,
mbarTMA,
- b_tma_desc,
+ b_tma_desc_op,
coordinates=[dimY, coord],
mbarId=stage,
predicate=producerPrimaryThread,
@@ -422,7 +442,7 @@ def generate_matmul_ws(
nvgpu.TmaAsyncLoadOp(
b_tma_slice_2,
mbarTMA,
- b_tma_desc,
+ b_tma_desc_op,
coordinates=[dimY2, coord],
mbarId=stage,
predicate=producerPrimaryThread,
@@ -514,10 +534,10 @@ def generate_matmul_ws(
predicate=consumerPrimaryThread,
)
da = nvgpu.WarpgroupGenerateDescriptorOp(
- a_wgmma_ty, a_tile_slice, a_tma_desc
+ a_wgmma_ty, a_tile_slice, a_tma_desc_op
)
db = nvgpu.WarpgroupGenerateDescriptorOp(
- b_wgmma_ty, b_tile_slice, b_tma_desc
+ b_wgmma_ty, b_tile_slice, b_tma_desc_op
)
# Step 6.3.3. MMA
@@ -679,28 +699,6 @@ def generate_matmul_multistage(
+ str(num_stages)
+ ">"
)
- a_tma_desc_ty = ir.Type.parse(
- "!nvgpu.tensormap.descriptor<tensor = memref<"
- + str(BLOCK_M)
- + "x"
- + str(TMA_LAST_DIM_F16)
- + "x"
- + str(a_elem_ty)
- + ", "
- + str(smem_space)
- + ">, swizzle = swizzle_128b, l2promo=none, oob=zero, interleave=none>"
- )
- b_tma_desc_ty = ir.Type.parse(
- "!nvgpu.tensormap.descriptor<tensor = memref<"
- + str(BLOCK_K)
- + "x"
- + str(TMA_LAST_DIM_F16)
- + "x"
- + str(b_elem_ty)
- + ", "
- + str(smem_space)
- + ">, swizzle = swizzle_128b, l2promo=none, oob=zero, interleave=none>"
- )
acc_ty = ir.Type.parse(
"!nvgpu.warpgroup.accumulator<fragmented=vector<"
+ str(BLOCK_M)
@@ -767,21 +765,26 @@ def generate_matmul_multistage(
t7 = gpu.wait(token_ty, [t6])
# Step 2. Create TMA Descriptors
- tma_specs = [
- (a_device, a_tma_desc_ty, a_tma_shape),
- (b_device, b_tma_desc_ty, b_tma_shape),
- ]
- tma_descs = []
- for x_device, tensor_map_ty, tile_shape in tma_specs:
- x_unranked = memref.cast(
- ir.UnrankedMemRefType.get(a_elem_ty, a_ty.memory_space), x_device
- )
- tma_descs.append(
- nvgpu.TmaCreateDescriptorOp(
- tensor_map_ty, x_unranked, map(c, tile_shape)
- ).result
- )
- a_tma_desc, b_tma_desc = tma_descs
+ a_tma_desc = TmaDescriptorBuilder(
+ nvgpu.TensorMapSwizzleKind.SWIZZLE_128B,
+ nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
+ nvgpu.TensorMapOOBKind.OOB_ZERO,
+ nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
+ a_tma_shape,
+ a_ty,
+ )
+
+ b_tma_desc = TmaDescriptorBuilder(
+ nvgpu.TensorMapSwizzleKind.SWIZZLE_128B,
+ nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
+ nvgpu.TensorMapOOBKind.OOB_ZERO,
+ nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
+ b_tma_shape,
+ b_ty,
+ )
+
+ a_tma_desc_op = a_tma_desc.tma_descriptor_op(a_device)
+ b_tma_desc_op = b_tma_desc.tma_descriptor_op(b_device)
# Step 3. Launch Kernel with 1 Warpgroup
cta_m = M // BLOCK_M
@@ -794,7 +797,7 @@ def generate_matmul_multistage(
[t7],
*map(c, grid),
*map(c, block),
- dynamicSharedMemorySize=c(smem_size, ty=T.i32())
+ dynamicSharedMemorySize=c(smem_size, ty=T.i32()),
)
launch_op.body.blocks.append(*([T.index()] * 12))
with ir.InsertionPoint(launch_op.body.blocks[0]):
@@ -819,8 +822,8 @@ def generate_matmul_multistage(
gpu.barrier()
# GPU Step 2. Prefetch TMA descriptors
- nvgpu.tma_prefetch_descriptor(a_tma_desc, predicate=primaryThread)
- nvgpu.tma_prefetch_descriptor(b_tma_desc, predicate=primaryThread)
+ nvgpu.tma_prefetch_descriptor(a_tma_desc_op, predicate=primaryThread)
+ nvgpu.tma_prefetch_descriptor(b_tma_desc_op, predicate=primaryThread)
# GPU Step 3. Prologue (global memory --> shared memory)
ns = num_stages if num_stages == 1 else num_stages - 1
@@ -880,7 +883,7 @@ def generate_matmul_multistage(
nvgpu.TmaAsyncLoadOp(
a_tma_slice,
mbarTMA,
- a_tma_desc,
+ a_tma_desc_op,
coordinates=[coord, dimX],
mbarId=iv,
predicate=primaryThread,
@@ -888,7 +891,7 @@ def generate_matmul_multistage(
nvgpu.TmaAsyncLoadOp(
b_tma_slice_1,
mbarTMA,
- b_tma_desc,
+ b_tma_desc_op,
coordinates=[dimY, coord],
mbarId=iv,
predicate=primaryThread,
@@ -896,7 +899,7 @@ def generate_matmul_multistage(
nvgpu.TmaAsyncLoadOp(
b_tma_slice_2,
mbarTMA,
- b_tma_desc,
+ b_tma_desc_op,
coordinates=[dimY2, coord],
mbarId=iv,
predicate=primaryThread,
@@ -972,10 +975,10 @@ def generate_matmul_multistage(
predicate=primaryThread,
)
da = nvgpu.WarpgroupGenerateDescriptorOp(
- a_wgmma_ty, a_tile_slice, a_tma_desc
+ a_wgmma_ty, a_tile_slice, a_tma_desc_op
)
db = nvgpu.WarpgroupGenerateDescriptorOp(
- b_wgmma_ty, b_tile_slice, b_tma_desc
+ b_wgmma_ty, b_tile_slice, b_tma_desc_op
)
# Step 4.3. MMA
@@ -1060,7 +1063,7 @@ def generate_matmul_multistage(
nvgpu.TmaAsyncLoadOp(
a_tma_slice,
mbarTMA,
- a_tma_desc,
+ a_tma_desc_op,
coordinates=[coord, dimX],
mbarId=nextSlot,
predicate=p,
@@ -1068,7 +1071,7 @@ def generate_matmul_multistage(
nvgpu.TmaAsyncLoadOp(
b_tma_slice_1,
mbarTMA,
- b_tma_desc,
+ b_tma_desc_op,
coordinates=[dimY, coord],
mbarId=nextSlot,
predicate=p,
@@ -1077,7 +1080,7 @@ def generate_matmul_multistage(
nvgpu.TmaAsyncLoadOp(
b_tma_slice_2,
mbarTMA,
- b_tma_desc,
+ b_tma_desc_op,
coordinates=[dimY2, coord],
mbarId=nextSlot,
predicate=p,
|
manishucsd
approved these changes
Mar 30, 2024
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM.
jpienaar
reviewed
Apr 1, 2024
mlir/test/Integration/GPU/CUDA/sm90/python/tools/matmulBuilder.py
Outdated
Show resolved
Hide resolved
grypp
added a commit
that referenced
this pull request
Apr 17, 2024
This PR adds NVGPU dialects' TensorMapDescriptorType in the py bindings. This is a follow-up issue from [this PR](#87153 (comment))
This PR simplifies TMA generation in the test, makes the code more readable. Co-authored-by: Manish Gupta <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This PR add
TmaDescriptorBuilder
mlir.nvgpu.ENUMs
.mlir.nvgpu
dialects.TmaDescriptorBuilder::tensormap_descriptor_ty
).