-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][vector] Add support for linearizing Extract, ExtractStridedSlice, Shuffle VectorOps in VectorLinearize #88204
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
22 commits
Select commit
Hold shift + click to select a range
dc63b10
add linearize patterns for Extract, ExtractStridedSlice, Shuffle Vect…
charithaintc 24a0545
Merge branch 'main' of https://github.com/llvm/llvm-project
charithaintc 1de7dc4
Merge branch 'main' into vector_linearize_mods
charithaintc de748c0
remove comments
charithaintc 962243c
fix test
charithaintc e20be00
address comments
charithaintc ded7ae0
Merge branch 'main' into vector_linearize_mods
charithaintc 0d9406d
address comments
charithaintc e807c7a
fix tests
charithaintc 186001a
Merge branch 'main' into vector_linearize_mods
charithaintc 92374a2
fix
charithaintc c45c507
add comments
charithaintc 1ac90fc
fix
charithaintc 0b96134
fix
charithaintc 7046090
fix comments
charithaintc 780896e
fix comments
charithaintc ec36971
fix
charithaintc f282393
Merge branch 'main' into vector_linearize_mods
charithaintc 32f39da
address comments
charithaintc e486a72
Merge branch 'main' into vector_linearize_mods
charithaintc 9d908c8
fix
charithaintc 5bbf22c
Merge branch 'main' into vector_linearize_mods
charithaintc File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,9 +13,16 @@ | |
#include "mlir/Dialect/Arith/IR/Arith.h" | ||
#include "mlir/Dialect/Vector/IR/VectorOps.h" | ||
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" | ||
#include "mlir/IR/Attributes.h" | ||
#include "mlir/IR/BuiltinAttributes.h" | ||
#include "mlir/IR/Operation.h" | ||
#include "mlir/IR/PatternMatch.h" | ||
#include "mlir/IR/TypeUtilities.h" | ||
#include "mlir/Support/LogicalResult.h" | ||
#include "mlir/Transforms/DialectConversion.h" | ||
#include "llvm/ADT/ArrayRef.h" | ||
#include <cstdint> | ||
#include <numeric> | ||
|
||
using namespace mlir; | ||
|
||
|
@@ -103,6 +110,251 @@ struct LinearizeVectorizable final | |
return success(); | ||
} | ||
|
||
private: | ||
unsigned targetVectorBitWidth; | ||
}; | ||
|
||
/// This pattern converts the ExtractStridedSliceOp into a ShuffleOp that works | ||
/// on a linearized vector. | ||
/// Following, | ||
/// vector.extract_strided_slice %source | ||
/// { offsets = [..], strides = [..], sizes = [..] } | ||
/// is converted to : | ||
/// %source_1d = vector.shape_cast %source | ||
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ] | ||
/// %out_nd = vector.shape_cast %out_1d | ||
/// `shuffle_indices_1d` is computed using the offsets and sizes of the | ||
/// extraction. | ||
struct LinearizeVectorExtractStridedSlice final | ||
: public mlir::OpConversionPattern<mlir::vector::ExtractStridedSliceOp> { | ||
using OpConversionPattern::OpConversionPattern; | ||
LinearizeVectorExtractStridedSlice( | ||
const TypeConverter &typeConverter, MLIRContext *context, | ||
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(), | ||
PatternBenefit benefit = 1) | ||
: OpConversionPattern(typeConverter, context, benefit), | ||
targetVectorBitWidth(targetVectBitWidth) {} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Thanks for adding support for the target vector bitwidth! |
||
|
||
LogicalResult | ||
matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor, | ||
ConversionPatternRewriter &rewriter) const override { | ||
Type dstType = getTypeConverter()->convertType(extractOp.getType()); | ||
assert(!(extractOp.getVector().getType().isScalable() || | ||
dstType.cast<VectorType>().isScalable()) && | ||
"scalable vectors are not supported."); | ||
if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth)) | ||
return rewriter.notifyMatchFailure( | ||
extractOp, "Can't flatten since targetBitWidth <= OpSize"); | ||
banach-space marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
ArrayAttr offsets = extractOp.getOffsets(); | ||
ArrayAttr sizes = extractOp.getSizes(); | ||
ArrayAttr strides = extractOp.getStrides(); | ||
if (!isConstantIntValue(strides[0], 1)) | ||
return rewriter.notifyMatchFailure( | ||
extractOp, "Strided slice with stride != 1 is not supported."); | ||
Value srcVector = adaptor.getVector(); | ||
// If kD offsets are specified for nD source vector (n > k), the granularity | ||
// of the extraction is greater than 1. In this case last (n-k) dimensions | ||
// form the extraction granularity. | ||
// Example : | ||
// vector.extract_strided_slice %src { | ||
// offsets = [0, 0], sizes = [2, 2], strides = [1, 1]} : | ||
// vector<4x8x8xf32> to vector<2x2x8xf32> | ||
// Here, extraction granularity is 8. | ||
int64_t extractGranularitySize = 1; | ||
int64_t nD = extractOp.getSourceVectorType().getRank(); | ||
int64_t kD = (int64_t)offsets.size(); | ||
int64_t k = kD; | ||
while (k < nD) { | ||
extractGranularitySize *= extractOp.getSourceVectorType().getShape()[k]; | ||
++k; | ||
} | ||
// Get total number of extracted slices. | ||
int64_t nExtractedSlices = 1; | ||
for (Attribute size : sizes) { | ||
nExtractedSlices *= size.cast<IntegerAttr>().getInt(); | ||
} | ||
// Compute the strides of the source vector considering first k dimensions. | ||
llvm::SmallVector<int64_t, 4> sourceStrides(kD, extractGranularitySize); | ||
for (int i = kD - 2; i >= 0; --i) { | ||
sourceStrides[i] = sourceStrides[i + 1] * | ||
extractOp.getSourceVectorType().getShape()[i + 1]; | ||
} | ||
// Final shuffle indices has nExtractedSlices * extractGranularitySize | ||
// elements. | ||
llvm::SmallVector<int64_t, 4> indices(nExtractedSlices * | ||
extractGranularitySize); | ||
// Compute the strides of the extracted kD vector. | ||
llvm::SmallVector<int64_t, 4> extractedStrides(kD, 1); | ||
// Compute extractedStrides. | ||
for (int i = kD - 2; i >= 0; --i) { | ||
extractedStrides[i] = | ||
extractedStrides[i + 1] * sizes[i + 1].cast<IntegerAttr>().getInt(); | ||
} | ||
// Iterate over all extracted slices from 0 to nExtractedSlices - 1 | ||
// and compute the multi-dimensional index and the corresponding linearized | ||
// index within the source vector. | ||
for (int64_t i = 0; i < nExtractedSlices; ++i) { | ||
int64_t index = i; | ||
// Compute the corresponding multi-dimensional index. | ||
llvm::SmallVector<int64_t, 4> multiDimIndex(kD, 0); | ||
for (int64_t j = 0; j < kD; ++j) { | ||
multiDimIndex[j] = (index / extractedStrides[j]); | ||
index -= multiDimIndex[j] * extractedStrides[j]; | ||
} | ||
// Compute the corresponding linearized index in the source vector | ||
// i.e. shift the multiDimIndex by the offsets. | ||
int64_t linearizedIndex = 0; | ||
for (int64_t j = 0; j < kD; ++j) { | ||
linearizedIndex += | ||
(offsets[j].cast<IntegerAttr>().getInt() + multiDimIndex[j]) * | ||
sourceStrides[j]; | ||
} | ||
// Fill the indices array form linearizedIndex to linearizedIndex + | ||
// extractGranularitySize. | ||
for (int64_t j = 0; j < extractGranularitySize; ++j) { | ||
indices[i * extractGranularitySize + j] = linearizedIndex + j; | ||
} | ||
} | ||
// Perform a shuffle to extract the kD vector. | ||
rewriter.replaceOpWithNewOp<vector::ShuffleOp>( | ||
extractOp, dstType, srcVector, srcVector, | ||
rewriter.getI64ArrayAttr(indices)); | ||
return success(); | ||
} | ||
|
||
private: | ||
unsigned targetVectorBitWidth; | ||
}; | ||
|
||
/// This pattern converts the ShuffleOp that works on nD (n > 1) | ||
/// vectors to a ShuffleOp that works on linearized vectors. | ||
/// Following, | ||
/// vector.shuffle %v1, %v2 [ shuffle_indices ] | ||
/// is converted to : | ||
/// %v1_1d = vector.shape_cast %v1 | ||
/// %v2_1d = vector.shape_cast %v2 | ||
/// %out_1d = vector.shuffle %v1_1d, %v2_1d [ shuffle_indices_1d ] | ||
/// %out_nd = vector.shape_cast %out_1d | ||
// `shuffle_indices_1d` is computed using the sizes and `shuffle_indices` | ||
/// of the original shuffle operation. | ||
struct LinearizeVectorShuffle final | ||
: public OpConversionPattern<vector::ShuffleOp> { | ||
using OpConversionPattern::OpConversionPattern; | ||
LinearizeVectorShuffle( | ||
const TypeConverter &typeConverter, MLIRContext *context, | ||
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(), | ||
PatternBenefit benefit = 1) | ||
: OpConversionPattern(typeConverter, context, benefit), | ||
targetVectorBitWidth(targetVectBitWidth) {} | ||
|
||
LogicalResult | ||
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor, | ||
ConversionPatternRewriter &rewriter) const override { | ||
Type dstType = getTypeConverter()->convertType(shuffleOp.getType()); | ||
assert(!(shuffleOp.getV1VectorType().isScalable() || | ||
shuffleOp.getV2VectorType().isScalable() || | ||
dstType.cast<VectorType>().isScalable()) && | ||
"scalable vectors are not supported."); | ||
if (!isLessThanTargetBitWidth(shuffleOp, targetVectorBitWidth)) | ||
return rewriter.notifyMatchFailure( | ||
shuffleOp, "Can't flatten since targetBitWidth <= OpSize"); | ||
|
||
Value vec1 = adaptor.getV1(); | ||
Value vec2 = adaptor.getV2(); | ||
int shuffleSliceLen = 1; | ||
int rank = shuffleOp.getV1().getType().getRank(); | ||
|
||
// If rank > 1, we need to do the shuffle in the granularity of slices | ||
// instead of scalars. Size of the slice is equal to the rank-1 innermost | ||
// dims. Mask of the shuffle op specifies which slice to take from the | ||
// outermost dim. | ||
if (rank > 1) { | ||
llvm::ArrayRef<int64_t> shape = shuffleOp.getV1().getType().getShape(); | ||
for (unsigned i = 1; i < shape.size(); ++i) { | ||
shuffleSliceLen *= shape[i]; | ||
} | ||
} | ||
|
||
// For each value in the mask, we generate the indices of the source vectors | ||
// that needs to be shuffled to the destination vector. If shuffleSliceLen > | ||
// 1 we need to shuffle the slices (consecutive shuffleSliceLen number of | ||
// elements) instead of scalars. | ||
ArrayAttr mask = shuffleOp.getMask(); | ||
int64_t totalSizeOfShuffledElmnts = mask.size() * shuffleSliceLen; | ||
llvm::SmallVector<int64_t, 2> indices(totalSizeOfShuffledElmnts); | ||
for (auto [i, value] : | ||
llvm::enumerate(mask.getAsValueRange<IntegerAttr>())) { | ||
|
||
int64_t v = value.getZExtValue(); | ||
std::iota(indices.begin() + shuffleSliceLen * i, | ||
indices.begin() + shuffleSliceLen * (i + 1), | ||
shuffleSliceLen * v); | ||
} | ||
|
||
rewriter.replaceOpWithNewOp<vector::ShuffleOp>( | ||
shuffleOp, dstType, vec1, vec2, rewriter.getI64ArrayAttr(indices)); | ||
return success(); | ||
} | ||
|
||
private: | ||
unsigned targetVectorBitWidth; | ||
}; | ||
|
||
/// This pattern converts the ExtractOp to a ShuffleOp that works on a | ||
/// linearized vector. | ||
/// Following, | ||
/// vector.extract %source [ position ] | ||
/// is converted to : | ||
/// %source_1d = vector.shape_cast %source | ||
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ] | ||
/// %out_nd = vector.shape_cast %out_1d | ||
/// `shuffle_indices_1d` is computed using the position of the original extract. | ||
struct LinearizeVectorExtract final | ||
: public OpConversionPattern<vector::ExtractOp> { | ||
using OpConversionPattern::OpConversionPattern; | ||
LinearizeVectorExtract( | ||
const TypeConverter &typeConverter, MLIRContext *context, | ||
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(), | ||
PatternBenefit benefit = 1) | ||
: OpConversionPattern(typeConverter, context, benefit), | ||
targetVectorBitWidth(targetVectBitWidth) {} | ||
LogicalResult | ||
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor, | ||
ConversionPatternRewriter &rewriter) const override { | ||
Type dstTy = getTypeConverter()->convertType(extractOp.getType()); | ||
assert(!(extractOp.getVector().getType().isScalable() || | ||
dstTy.cast<VectorType>().isScalable()) && | ||
"scalable vectors are not supported."); | ||
if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth)) | ||
return rewriter.notifyMatchFailure( | ||
extractOp, "Can't flatten since targetBitWidth <= OpSize"); | ||
|
||
// Dynamic position is not supported. | ||
if (extractOp.hasDynamicPosition()) | ||
return rewriter.notifyMatchFailure(extractOp, | ||
"dynamic position is not supported."); | ||
|
||
llvm::ArrayRef<int64_t> shape = extractOp.getVector().getType().getShape(); | ||
int64_t size = extractOp.getVector().getType().getNumElements(); | ||
|
||
// Compute linearized offset. | ||
int64_t linearizedOffset = 0; | ||
llvm::ArrayRef<int64_t> offsets = extractOp.getStaticPosition(); | ||
for (auto [i, off] : llvm::enumerate(offsets)) { | ||
size /= shape[i]; | ||
linearizedOffset += offsets[i] * size; | ||
} | ||
|
||
llvm::SmallVector<int64_t, 2> indices(size); | ||
std::iota(indices.begin(), indices.end(), linearizedOffset); | ||
rewriter.replaceOpWithNewOp<vector::ShuffleOp>( | ||
extractOp, dstTy, adaptor.getVector(), adaptor.getVector(), | ||
rewriter.getI64ArrayAttr(indices)); | ||
|
||
return success(); | ||
} | ||
|
||
private: | ||
unsigned targetVectorBitWidth; | ||
}; | ||
|
@@ -145,3 +397,21 @@ void mlir::vector::populateVectorLinearizeTypeConversionsAndLegality( | |
patterns.add<LinearizeConstant, LinearizeVectorizable>( | ||
typeConverter, patterns.getContext(), targetBitWidth); | ||
} | ||
|
||
void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns( | ||
TypeConverter &typeConverter, RewritePatternSet &patterns, | ||
ConversionTarget &target, unsigned int targetBitWidth) { | ||
target.addDynamicallyLegalOp<vector::ShuffleOp>( | ||
[=](vector::ShuffleOp shuffleOp) -> bool { | ||
return isLessThanTargetBitWidth(shuffleOp, targetBitWidth) | ||
? (typeConverter.isLegal(shuffleOp) && | ||
shuffleOp.getResult() | ||
.getType() | ||
.cast<mlir::VectorType>() | ||
.getRank() == 1) | ||
: true; | ||
}); | ||
patterns.add<LinearizeVectorShuffle, LinearizeVectorExtract, | ||
LinearizeVectorExtractStridedSlice>( | ||
typeConverter, patterns.getContext(), targetBitWidth); | ||
} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.