Skip to content

[mlir][vector] Add support for linearizing Extract, ExtractStridedSlice, Shuffle VectorOps in VectorLinearize #88204

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 22 commits into from
Apr 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -389,6 +389,13 @@ void populateVectorLinearizeTypeConversionsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, unsigned targetBitWidth);

/// Populates patterns for linearizing ND (N >= 2) vector operations to 1D
/// vector shuffle operations.
void populateVectorLinearizeShuffleLikeOpsPatterns(TypeConverter &typeConverter,
RewritePatternSet &patterns,
ConversionTarget &target,
unsigned targetBitWidth);

} // namespace vector
} // namespace mlir

Expand Down
270 changes: 270 additions & 0 deletions mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,16 @@
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/ArrayRef.h"
#include <cstdint>
#include <numeric>

using namespace mlir;

Expand Down Expand Up @@ -103,6 +110,251 @@ struct LinearizeVectorizable final
return success();
}

private:
unsigned targetVectorBitWidth;
};

/// This pattern converts the ExtractStridedSliceOp into a ShuffleOp that works
/// on a linearized vector.
/// Following,
/// vector.extract_strided_slice %source
/// { offsets = [..], strides = [..], sizes = [..] }
/// is converted to :
/// %source_1d = vector.shape_cast %source
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ]
/// %out_nd = vector.shape_cast %out_1d
/// `shuffle_indices_1d` is computed using the offsets and sizes of the
/// extraction.
struct LinearizeVectorExtractStridedSlice final
: public mlir::OpConversionPattern<mlir::vector::ExtractStridedSliceOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorExtractStridedSlice(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for adding support for the target vector bitwidth!


LogicalResult
matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type dstType = getTypeConverter()->convertType(extractOp.getType());
assert(!(extractOp.getVector().getType().isScalable() ||
dstType.cast<VectorType>().isScalable()) &&
"scalable vectors are not supported.");
if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
extractOp, "Can't flatten since targetBitWidth <= OpSize");

ArrayAttr offsets = extractOp.getOffsets();
ArrayAttr sizes = extractOp.getSizes();
ArrayAttr strides = extractOp.getStrides();
if (!isConstantIntValue(strides[0], 1))
return rewriter.notifyMatchFailure(
extractOp, "Strided slice with stride != 1 is not supported.");
Value srcVector = adaptor.getVector();
// If kD offsets are specified for nD source vector (n > k), the granularity
// of the extraction is greater than 1. In this case last (n-k) dimensions
// form the extraction granularity.
// Example :
// vector.extract_strided_slice %src {
// offsets = [0, 0], sizes = [2, 2], strides = [1, 1]} :
// vector<4x8x8xf32> to vector<2x2x8xf32>
// Here, extraction granularity is 8.
int64_t extractGranularitySize = 1;
int64_t nD = extractOp.getSourceVectorType().getRank();
int64_t kD = (int64_t)offsets.size();
int64_t k = kD;
while (k < nD) {
extractGranularitySize *= extractOp.getSourceVectorType().getShape()[k];
++k;
}
// Get total number of extracted slices.
int64_t nExtractedSlices = 1;
for (Attribute size : sizes) {
nExtractedSlices *= size.cast<IntegerAttr>().getInt();
}
// Compute the strides of the source vector considering first k dimensions.
llvm::SmallVector<int64_t, 4> sourceStrides(kD, extractGranularitySize);
for (int i = kD - 2; i >= 0; --i) {
sourceStrides[i] = sourceStrides[i + 1] *
extractOp.getSourceVectorType().getShape()[i + 1];
}
// Final shuffle indices has nExtractedSlices * extractGranularitySize
// elements.
llvm::SmallVector<int64_t, 4> indices(nExtractedSlices *
extractGranularitySize);
// Compute the strides of the extracted kD vector.
llvm::SmallVector<int64_t, 4> extractedStrides(kD, 1);
// Compute extractedStrides.
for (int i = kD - 2; i >= 0; --i) {
extractedStrides[i] =
extractedStrides[i + 1] * sizes[i + 1].cast<IntegerAttr>().getInt();
}
// Iterate over all extracted slices from 0 to nExtractedSlices - 1
// and compute the multi-dimensional index and the corresponding linearized
// index within the source vector.
for (int64_t i = 0; i < nExtractedSlices; ++i) {
int64_t index = i;
// Compute the corresponding multi-dimensional index.
llvm::SmallVector<int64_t, 4> multiDimIndex(kD, 0);
for (int64_t j = 0; j < kD; ++j) {
multiDimIndex[j] = (index / extractedStrides[j]);
index -= multiDimIndex[j] * extractedStrides[j];
}
// Compute the corresponding linearized index in the source vector
// i.e. shift the multiDimIndex by the offsets.
int64_t linearizedIndex = 0;
for (int64_t j = 0; j < kD; ++j) {
linearizedIndex +=
(offsets[j].cast<IntegerAttr>().getInt() + multiDimIndex[j]) *
sourceStrides[j];
}
// Fill the indices array form linearizedIndex to linearizedIndex +
// extractGranularitySize.
for (int64_t j = 0; j < extractGranularitySize; ++j) {
indices[i * extractGranularitySize + j] = linearizedIndex + j;
}
}
// Perform a shuffle to extract the kD vector.
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
extractOp, dstType, srcVector, srcVector,
rewriter.getI64ArrayAttr(indices));
return success();
}

private:
unsigned targetVectorBitWidth;
};

/// This pattern converts the ShuffleOp that works on nD (n > 1)
/// vectors to a ShuffleOp that works on linearized vectors.
/// Following,
/// vector.shuffle %v1, %v2 [ shuffle_indices ]
/// is converted to :
/// %v1_1d = vector.shape_cast %v1
/// %v2_1d = vector.shape_cast %v2
/// %out_1d = vector.shuffle %v1_1d, %v2_1d [ shuffle_indices_1d ]
/// %out_nd = vector.shape_cast %out_1d
// `shuffle_indices_1d` is computed using the sizes and `shuffle_indices`
/// of the original shuffle operation.
struct LinearizeVectorShuffle final
: public OpConversionPattern<vector::ShuffleOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorShuffle(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}

LogicalResult
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type dstType = getTypeConverter()->convertType(shuffleOp.getType());
assert(!(shuffleOp.getV1VectorType().isScalable() ||
shuffleOp.getV2VectorType().isScalable() ||
dstType.cast<VectorType>().isScalable()) &&
"scalable vectors are not supported.");
if (!isLessThanTargetBitWidth(shuffleOp, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
shuffleOp, "Can't flatten since targetBitWidth <= OpSize");

Value vec1 = adaptor.getV1();
Value vec2 = adaptor.getV2();
int shuffleSliceLen = 1;
int rank = shuffleOp.getV1().getType().getRank();

// If rank > 1, we need to do the shuffle in the granularity of slices
// instead of scalars. Size of the slice is equal to the rank-1 innermost
// dims. Mask of the shuffle op specifies which slice to take from the
// outermost dim.
if (rank > 1) {
llvm::ArrayRef<int64_t> shape = shuffleOp.getV1().getType().getShape();
for (unsigned i = 1; i < shape.size(); ++i) {
shuffleSliceLen *= shape[i];
}
}

// For each value in the mask, we generate the indices of the source vectors
// that needs to be shuffled to the destination vector. If shuffleSliceLen >
// 1 we need to shuffle the slices (consecutive shuffleSliceLen number of
// elements) instead of scalars.
ArrayAttr mask = shuffleOp.getMask();
int64_t totalSizeOfShuffledElmnts = mask.size() * shuffleSliceLen;
llvm::SmallVector<int64_t, 2> indices(totalSizeOfShuffledElmnts);
for (auto [i, value] :
llvm::enumerate(mask.getAsValueRange<IntegerAttr>())) {

int64_t v = value.getZExtValue();
std::iota(indices.begin() + shuffleSliceLen * i,
indices.begin() + shuffleSliceLen * (i + 1),
shuffleSliceLen * v);
}

rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
shuffleOp, dstType, vec1, vec2, rewriter.getI64ArrayAttr(indices));
return success();
}

private:
unsigned targetVectorBitWidth;
};

/// This pattern converts the ExtractOp to a ShuffleOp that works on a
/// linearized vector.
/// Following,
/// vector.extract %source [ position ]
/// is converted to :
/// %source_1d = vector.shape_cast %source
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ]
/// %out_nd = vector.shape_cast %out_1d
/// `shuffle_indices_1d` is computed using the position of the original extract.
struct LinearizeVectorExtract final
: public OpConversionPattern<vector::ExtractOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorExtract(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
LogicalResult
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type dstTy = getTypeConverter()->convertType(extractOp.getType());
assert(!(extractOp.getVector().getType().isScalable() ||
dstTy.cast<VectorType>().isScalable()) &&
"scalable vectors are not supported.");
if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
extractOp, "Can't flatten since targetBitWidth <= OpSize");

// Dynamic position is not supported.
if (extractOp.hasDynamicPosition())
return rewriter.notifyMatchFailure(extractOp,
"dynamic position is not supported.");

llvm::ArrayRef<int64_t> shape = extractOp.getVector().getType().getShape();
int64_t size = extractOp.getVector().getType().getNumElements();

// Compute linearized offset.
int64_t linearizedOffset = 0;
llvm::ArrayRef<int64_t> offsets = extractOp.getStaticPosition();
for (auto [i, off] : llvm::enumerate(offsets)) {
size /= shape[i];
linearizedOffset += offsets[i] * size;
}

llvm::SmallVector<int64_t, 2> indices(size);
std::iota(indices.begin(), indices.end(), linearizedOffset);
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
extractOp, dstTy, adaptor.getVector(), adaptor.getVector(),
rewriter.getI64ArrayAttr(indices));

return success();
}

private:
unsigned targetVectorBitWidth;
};
Expand Down Expand Up @@ -145,3 +397,21 @@ void mlir::vector::populateVectorLinearizeTypeConversionsAndLegality(
patterns.add<LinearizeConstant, LinearizeVectorizable>(
typeConverter, patterns.getContext(), targetBitWidth);
}

void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, unsigned int targetBitWidth) {
target.addDynamicallyLegalOp<vector::ShuffleOp>(
[=](vector::ShuffleOp shuffleOp) -> bool {
return isLessThanTargetBitWidth(shuffleOp, targetBitWidth)
? (typeConverter.isLegal(shuffleOp) &&
shuffleOp.getResult()
.getType()
.cast<mlir::VectorType>()
.getRank() == 1)
: true;
});
patterns.add<LinearizeVectorShuffle, LinearizeVectorExtract,
LinearizeVectorExtractStridedSlice>(
typeConverter, patterns.getContext(), targetBitWidth);
}
Loading