-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[mlir][vector] Determine vector sizes from the result shape in the ca… #88249
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
@llvm/pr-subscribers-mlir-linalg @llvm/pr-subscribers-mlir Author: Prashant Kumar (pashu123) Changes…se of tensor pack When the vector sizes are not passed as inputs to the vector transform operation, the vector sizes are queried from the static result shape in the case of tensor.pack op. Full diff: https://github.com/llvm/llvm-project/pull/88249.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 25785653a71675..422fc0562f9003 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -1525,6 +1525,17 @@ vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp,
(void)status; // prevent unused variable warning on non-assert builds.
assert(succeeded(status) && "failed to reify result shapes");
+ ArrayRef<int64_t> resultTensorShape = packOp.getDestType().getShape();
+
+ // If the input vector sizes are not provided, then the vector sizes are
+ // determined by the result tensor shape.
+ if (inputVectorSizes.empty()) {
+ // Make sure that the result tensor shape is static.
+ if (ShapedType::isDynamicShape(resultTensorShape))
+ return failure();
+ inputVectorSizes = resultTensorShape.take_front(packOp.getSourceRank());
+ }
+
// Create masked TransferReadOp.
SmallVector<int64_t> inputShape(inputVectorSizes);
auto innerTiles = packOp.getStaticInnerTiles();
@@ -1763,7 +1774,7 @@ vectorizeDynamicLinalgOpPrecondition(linalg::LinalgOp op,
/// Returns success if `inputVectorSizes` is a valid masking configuraion for
/// given `shape`, i.e., it meets:
/// 1. The numbers of elements in both array are equal.
-/// 2. `inputVectorSizes` does nos have dynamic dimensions.
+/// 2. `inputVectorSizes` does not have dynamic dimensions.
/// 3. All the values in `inputVectorSizes` are greater than or equal to
/// static sizes in `shape`.
static LogicalResult
@@ -1881,18 +1892,19 @@ static LogicalResult vectorizeLinalgOpPrecondition(
return success();
}
-/// TODO: Use a matcher to check for a constant padding value.
static LogicalResult
vectorizePackOpPrecondition(tensor::PackOp packOp,
ArrayRef<int64_t> inputVectorSizes) {
auto padValue = packOp.getPaddingValue();
- if (padValue && !padValue.getDefiningOp<arith::ConstantOp>()) {
+ Attribute cstAttr;
+ if (padValue && !matchPattern(padValue, m_Constant(&cstAttr))) {
LDBG("pad value is not constant: " << packOp << "\n");
return failure();
}
ArrayRef<int64_t> resultTensorShape = packOp.getDestType().getShape();
- if (failed(isValidMaskedInputVector(
+ if (!inputVectorSizes.empty() &&
+ failed(isValidMaskedInputVector(
resultTensorShape.take_front(packOp.getSourceRank()),
inputVectorSizes)))
return failure();
diff --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index 2d01d57304013c..f354ab9ea0b0a3 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -812,3 +812,37 @@ func.func @test_vectorize_unpack_no_masks(%source: tensor<8x8x32x16xf32>, %dest:
transform.yield
}
}
+
+ // -----
+
+// CHECK-LABEL: test_vectorize_padded_pack_no_vector_sizes
+func.func @test_vectorize_padded_pack_no_vector_sizes(%arg0: tensor<32x7x15xf32>, %arg1: tensor<32x4x1x16x2xf32>) -> tensor<32x4x1x16x2xf32> {
+ %pad = arith.constant 0.000000e+00 : f32
+ %pack = tensor.pack %arg0 padding_value(%pad : f32) inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x7x15xf32> -> tensor<32x4x1x16x2xf32>
+ return %pack : tensor<32x4x1x16x2xf32>
+}
+// CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[c32:.*]] = arith.constant 32 : index
+// CHECK-DAG: %[[c7:.*]] = arith.constant 7 : index
+// CHECK-DAG: %[[c15:.*]] = arith.constant 15 : index
+// CHECK: %[[mask:.*]] = vector.create_mask %[[c32]], %[[c7]], %[[c15]] : vector<32x8x16xi1>
+// CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] {
+// CHECK-SAME: vector.transfer_read %{{.*}}[%[[c0]], %[[c0]], %[[c0]]], %[[cst]]
+// CHECK-SAME: {in_bounds = [true, true, true]} : tensor<32x7x15xf32>, vector<32x8x16xf32>
+// CHECK-SAME: } : vector<32x8x16xi1> -> vector<32x8x16xf32>
+// CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[masked_read]] : vector<32x8x16xf32> to vector<32x4x2x1x16xf32>
+// CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [0, 1, 3, 4, 2] : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32>
+// CHECK-DAG: %[[c0_1:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<32x4x1x16x2xf32>
+// CHECK: %[[write:.*]] = vector.transfer_write %[[transpose]], %[[empty]][%[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]], %[[c0_1]]]
+// CHECK-SAME: {in_bounds = [true, true, true, true, true]} : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32>
+// CHECK: return %[[write]] : tensor<32x4x1x16x2xf32>
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["tensor.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+ transform.structured.vectorize %0 : !transform.any_op
+ transform.yield
+ }
+}
|
4a5dbc3
to
05c23ec
Compare
2932ae2
to
7bfa06d
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, just two nits. Thanks for pushing on this!
…se of tensor pack When the vector sizes are not passed as inputs to the vector transform operation, the vector sizes are queried from the static result shape in the case of tensor.pack op.
…se of tensor pack
When the vector sizes are not passed as inputs to the vector transform operation, the vector sizes are queried from the static result shape in the case of tensor.pack op.