Skip to content

[mlir] Add ReifyRankedShapedTypeOpInterface to tosa::TransposeOp #88890

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 9 additions & 8 deletions mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -1501,7 +1501,7 @@ def Tosa_ReduceSumOp : Tosa_InferTensorTypeOp<"reduce_sum"> {

let hasFolder = 1;
let hasVerifier = 1;

let extraClassDeclaration = [{
/// Returns true when two result types are compatible for this op;
/// Method used by InferTypeOpInterface.
Expand Down Expand Up @@ -1651,7 +1651,7 @@ def Tosa_ReverseOp: Tosa_Op<"reverse", [

let hasFolder = 1;
let hasVerifier = 1;

let assemblyFormat = "operands attr-dict `:` functional-type(operands, results)";
}

Expand Down Expand Up @@ -1707,7 +1707,8 @@ def Tosa_TileOp : Tosa_InferShapedTypeOp<"tile"> {
//===----------------------------------------------------------------------===//
// Operator: transpose
//===----------------------------------------------------------------------===//
def Tosa_TransposeOp : Tosa_InferShapedTypeOp<"transpose"> {
def Tosa_TransposeOp : Tosa_InferShapedTypeOp<"transpose",
[DeclareOpInterfaceMethods<ReifyRankedShapedTypeOpInterface>]> {
let summary = "Transpose operator";

let description = [{
Expand Down Expand Up @@ -1834,9 +1835,9 @@ def Tosa_CastOp: Tosa_Op<"cast", [Pure,

| Mode | Input | Output |
|--------------------------|---------|---------|
| signed 8 to bool | int8 | Boolean |
| signed 16 to bool | int16 | Boolean |
| signed 32 to bool | int32 | Boolean |
| signed 8 to bool | int8 | Boolean |
| signed 16 to bool | int16 | Boolean |
| signed 32 to bool | int32 | Boolean |
| bool to 8 | Boolean | int8 |
| bool to 16 | Boolean | int16 |
| bool to 32 | Boolean | int32 |
Expand All @@ -1850,8 +1851,8 @@ def Tosa_CastOp: Tosa_Op<"cast", [Pure,
| float to signed 16 | float | int16 |
| signed 8 to float | int8 | float |
| signed 16 to float | int16 | float |
| float 32 to float 64 | float32 | float64 |
| float 64 to float 32 | float64 | float32 |
| float 32 to float 64 | float32 | float64 |
| float 64 to float 32 | float64 | float32 |
}];

let arguments = (ins
Expand Down
26 changes: 26 additions & 0 deletions mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1119,6 +1119,32 @@ LogicalResult tosa::TransposeOp::verify() {
return success();
}

LogicalResult TransposeOp::reifyResultShapes(
OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {

SmallVector<int64_t> transposePerms;
if (getConstantPerms(transposePerms).failed())
return failure();

Value input = getInput1();
auto inputType = input.getType().cast<TensorType>();

SmallVector<OpFoldResult> returnedDims(inputType.getRank());
for (auto dim : transposePerms) {
int64_t dimInInput = transposePerms[dim];
if (inputType.isDynamicDim(dimInInput))
returnedDims[dim] =
builder.create<tensor::DimOp>(getLoc(), input, dimInInput)
.getResult();
else
returnedDims[dim] =
builder.getIndexAttr(inputType.getDimSize(dimInInput));
}

reifiedReturnShapes.emplace_back(std::move(returnedDims));
return success();
}

LogicalResult tosa::GatherOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
GatherOp::Adaptor adaptor,
Expand Down
28 changes: 28 additions & 0 deletions mlir/test/Dialect/MemRef/resolve-dim-ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -25,3 +25,31 @@ func.func @dim_out_of_bounds_2(%idx1 : index, %idx2 : index) -> index {
%0 = tensor.dim %alloc, %idx : tensor<?x?xf32>
return %0 : index
}

// -----

// CHECK-LABEL: func.func @dynamic_dim_of_transpose_op(
// CHECK-SAME: %[[arg:.*]]: tensor<1x2x?x8xi8>) -> index {
// CHECK-NEXT: %[[c2:.*]] = arith.constant 2
// CHECK-NEXT: tensor.dim %[[arg]], %[[c2]]
// CHECK-NEXT: return
func.func @dynamic_dim_of_transpose_op(%arg0: tensor<1x2x?x8xi8>) -> index {
%0 = "tosa.const"() <{value = dense<[0, 3, 1, 2]> : tensor<4xi32>}> : () -> tensor<4xi32>
%1 = tosa.transpose %arg0, %0 : (tensor<1x2x?x8xi8>, tensor<4xi32>) -> tensor<1x8x2x?xi8>
%c3 = arith.constant 3 : index
%dim = tensor.dim %1, %c3 : tensor<1x8x2x?xi8>
return %dim : index
}

// -----

// CHECK-LABEL: func.func @static_dim_of_transpose_op(
// CHECK: arith.constant 100 : index
// CHECK: return
func.func @static_dim_of_transpose_op(%arg0: tensor<1x100x?x8xi8>) -> index {
%0 = "tosa.const"() <{value = dense<[0, 3, 1, 2]> : tensor<4xi32>}> : () -> tensor<4xi32>
%1 = tosa.transpose %arg0, %0 : (tensor<1x100x?x8xi8>, tensor<4xi32>) -> tensor<1x8x100x?xi8>
%c2 = arith.constant 2 : index
%dim = tensor.dim %1, %c2 : tensor<1x8x100x?xi8>
return %dim : index
}