Skip to content

[mlir][sparse] fold explicit value during sparsification #90530

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -344,10 +344,14 @@ class SparseTensorType {
unsigned getPosWidth() const { return enc ? enc.getPosWidth() : 0; }

/// Returns the explicit value, defaulting to null Attribute for unset.
Attribute getExplicitVal() const { return enc.getExplicitVal(); }
Attribute getExplicitVal() const {
return enc ? enc.getExplicitVal() : nullptr;
}

/// Returns the implicit value, defaulting to null Attribute for 0.
Attribute getImplicitVal() const { return enc.getImplicitVal(); }
Attribute getImplicitVal() const {
return enc ? enc.getImplicitVal() : nullptr;
}

/// Returns the coordinate-overhead MLIR type, defaulting to `IndexType`.
Type getCrdType() const { return enc.getCrdElemType(); }
Expand Down
10 changes: 8 additions & 2 deletions mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -498,9 +498,15 @@ static Value genTensorLoad(CodegenEnv &env, OpBuilder &builder, ExprId exp) {
Value val = env.exp(exp).val;
if (val)
return val;
// Load during insertion.
// Get tensor operand.
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
OpOperand *t = &op->getOpOperand(env.exp(exp).tensor);
// Fold binary-valued tensor into explicit value.
const auto stt = getSparseTensorType(t->get());
if (auto explVal = stt.getExplicitVal())
return genValFromAttr(builder, loc, explVal);
// Load during insertion.
if (env.isSparseOutput(t)) {
if (env.isCustomReduc())
return genInsertionLoadReduce(env, builder, t);
Expand All @@ -509,7 +515,7 @@ static Value genTensorLoad(CodegenEnv &env, OpBuilder &builder, ExprId exp) {
// Actual load.
SmallVector<Value> args;
Value ptr = genSubscript(env, builder, t, args);
return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
return builder.create<memref::LoadOp>(loc, ptr, args);
}

/// Generates a store on a dense or sparse tensor.
Expand Down
10 changes: 10 additions & 0 deletions mlir/lib/Dialect/SparseTensor/Transforms/Utils/CodegenUtils.h
Original file line number Diff line number Diff line change
Expand Up @@ -399,6 +399,16 @@ inline Value constantLevelTypeEncoding(OpBuilder &builder, Location loc,
return constantI64(builder, loc, static_cast<uint64_t>(lt));
}

// Generates a constant from a validated value carrying attribute.
inline Value genValFromAttr(OpBuilder &builder, Location loc, Attribute attr) {
if (auto arrayAttr = dyn_cast<ArrayAttr>(attr)) {
Type tp = cast<TypedAttr>(arrayAttr[0]).getType();
return builder.create<complex::ConstantOp>(loc, tp, arrayAttr);
}
return builder.create<arith::ConstantOp>(loc, cast<TypedAttr>(attr));
}

// TODO: is this at the right place?
inline bool isZeroRankedTensorOrScalar(Type type) {
auto rtp = dyn_cast<RankedTensorType>(type);
return !rtp || rtp.getRank() == 0;
Expand Down
75 changes: 75 additions & 0 deletions mlir/test/Dialect/SparseTensor/sparse_matmul_one.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
// RUN: mlir-opt %s --linalg-generalize-named-ops \
// RUN: --sparsification-and-bufferization | FileCheck %s

#CSR_ones_complex = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed)
// explicitVal = (1.0, 0.0) : complex<f32>,
// implicitVal = (0.0, 0.0) : complex<f32>
}>

#CSR_ones_fp = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
explicitVal = 1.0 : f32,
implicitVal = 0.0 : f32
}>

#CSR_ones_int = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
explicitVal = 1 : i32,
implicitVal = 0 : i32
}>

// CHECK-LABEL: func.func @matmul_complex
//
// TODO: make this work
//
func.func @matmul_complex(%a: tensor<10x20xcomplex<f32>>,
%b: tensor<20x30xcomplex<f32>, #CSR_ones_complex>,
%c: tensor<10x30xcomplex<f32>>) -> tensor<10x30xcomplex<f32>> {
%0 = linalg.matmul
ins(%a, %b: tensor<10x20xcomplex<f32>>, tensor<20x30xcomplex<f32>,#CSR_ones_complex>)
outs(%c: tensor<10x30xcomplex<f32>>) -> tensor<10x30xcomplex<f32>>
return %0 : tensor<10x30xcomplex<f32>>
}

// CHECK-LABEL: func.func @matmul_fp
// CHECK: scf.for
// CHECK: scf.for
// CHECK: %[[X:.*]] = memref.load
// CHECK: scf.for
// CHECK: %[[I:.*]] = memref.load
// CHECK: %[[Y:.*]] = memref.load
// CHECK: %[[M:.*]] = arith.addf %[[Y]], %[[X]] : f32
// CHECK: memref.store %[[M]]
// CHECK: }
// CHECK: }
// CHECK: }
func.func @matmul_fp(%a: tensor<10x20xf32>,
%b: tensor<20x30xf32, #CSR_ones_fp>,
%c: tensor<10x30xf32>) -> tensor<10x30xf32> {
%0 = linalg.matmul
ins(%a, %b: tensor<10x20xf32>, tensor<20x30xf32,#CSR_ones_fp>)
outs(%c: tensor<10x30xf32>) -> tensor<10x30xf32>
return %0 : tensor<10x30xf32>
}

// CHECK-LABEL: func.func @matmul_int
// CHECK: scf.for
// CHECK: scf.for
// CHECK: %[[X:.*]] = memref.load
// CHECK: scf.for
// CHECK: %[[I:.*]] = memref.load
// CHECK: %[[Y:.*]] = memref.load
// CHECK: %[[M:.*]] = arith.addi %[[Y]], %[[X]] : i32
// CHECK: memref.store %[[M]]
// CHECK: }
// CHECK: }
// CHECK: }
func.func @matmul_int(%a: tensor<10x20xi32>,
%b: tensor<20x30xi32, #CSR_ones_int>,
%c: tensor<10x30xi32>) -> tensor<10x30xi32> {
%0 = linalg.matmul
ins(%a, %b: tensor<10x20xi32>, tensor<20x30xi32,#CSR_ones_int>)
outs(%c: tensor<10x30xi32>) -> tensor<10x30xi32>
return %0 : tensor<10x30xi32>
}