Skip to content

[mlir][math] Add Polynomial Approximation for acos, asin op #90962

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
160 changes: 154 additions & 6 deletions mlir/lib/Dialect/Math/Transforms/PolynomialApproximation.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -821,6 +821,153 @@ Log1pApproximation::matchAndRewrite(math::Log1pOp op,
return success();
}

//----------------------------------------------------------------------------//
// Asin approximation.
//----------------------------------------------------------------------------//

// Approximates asin(x).
// This approximation is based on the following stackoverflow post:
// https://stackoverflow.com/a/42683455
namespace {
struct AsinPolynomialApproximation : public OpRewritePattern<math::AsinOp> {
public:
using OpRewritePattern::OpRewritePattern;

LogicalResult matchAndRewrite(math::AsinOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
AsinPolynomialApproximation::matchAndRewrite(math::AsinOp op,
PatternRewriter &rewriter) const {
Value operand = op.getOperand();
Type elementType = getElementTypeOrSelf(operand);

if (!(elementType.isF32() || elementType.isF16()))
return rewriter.notifyMatchFailure(op,
"only f32 and f16 type is supported.");
VectorShape shape = vectorShape(operand);

ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};

auto fma = [&](Value a, Value b, Value c) -> Value {
return builder.create<math::FmaOp>(a, b, c);
};

auto mul = [&](Value a, Value b) -> Value {
return builder.create<arith::MulFOp>(a, b);
};

Value s = mul(operand, operand);
Value q = mul(s, s);
Value r = bcast(floatCst(builder, 5.5579749017470502e-2, elementType));
Value t = bcast(floatCst(builder, -6.2027913464120114e-2, elementType));

r = fma(r, q, bcast(floatCst(builder, 5.4224464349245036e-2, elementType)));
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The naming has been borrowed from the post https://stackoverflow.com/a/42683455 .

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yeah.. I was going to suggest using Remez algorithm instead of Taylor series. However, aren't these parameters optimized for [-9/16, 9/16]? What happens to other input values...?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I added this script: https://gist.github.com/pashu123/cd3e682b21a64ac306f650fb842a422b to test 50 values between -1 and 1. The results are https://gist.github.com/pashu123/8acb233bd045bacabfa8c992d4040465 It's well within the bounds.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks, can you add it to the PR description?

t = fma(t, q, bcast(floatCst(builder, -1.1326992890324464e-2, elementType)));
r = fma(r, q, bcast(floatCst(builder, 1.5268872539397656e-2, elementType)));
t = fma(t, q, bcast(floatCst(builder, 1.0493798473372081e-2, elementType)));
r = fma(r, q, bcast(floatCst(builder, 1.4106045900607047e-2, elementType)));
t = fma(t, q, bcast(floatCst(builder, 1.7339776384962050e-2, elementType)));
r = fma(r, q, bcast(floatCst(builder, 2.2372961589651054e-2, elementType)));
t = fma(t, q, bcast(floatCst(builder, 3.0381912707941005e-2, elementType)));
r = fma(r, q, bcast(floatCst(builder, 4.4642857881094775e-2, elementType)));
t = fma(t, q, bcast(floatCst(builder, 7.4999999991367292e-2, elementType)));
r = fma(r, s, t);
r = fma(r, s, bcast(floatCst(builder, 1.6666666666670193e-1, elementType)));
t = mul(operand, s);
r = fma(r, t, operand);

rewriter.replaceOp(op, r);
return success();
}

//----------------------------------------------------------------------------//
// Acos approximation.
//----------------------------------------------------------------------------//

// Approximates acos(x).
// This approximation is based on the following stackoverflow post:
// https://stackoverflow.com/a/42683455
namespace {
struct AcosPolynomialApproximation : public OpRewritePattern<math::AcosOp> {
public:
using OpRewritePattern::OpRewritePattern;

LogicalResult matchAndRewrite(math::AcosOp op,
PatternRewriter &rewriter) const final;
};
} // namespace
LogicalResult
AcosPolynomialApproximation::matchAndRewrite(math::AcosOp op,
PatternRewriter &rewriter) const {
Value operand = op.getOperand();
Type elementType = getElementTypeOrSelf(operand);

if (!(elementType.isF32() || elementType.isF16()))
return rewriter.notifyMatchFailure(op,
"only f32 and f16 type is supported.");
VectorShape shape = vectorShape(operand);

ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
auto bcast = [&](Value value) -> Value {
return broadcast(builder, value, shape);
};

auto fma = [&](Value a, Value b, Value c) -> Value {
return builder.create<math::FmaOp>(a, b, c);
};

auto mul = [&](Value a, Value b) -> Value {
return builder.create<arith::MulFOp>(a, b);
};

Value negOperand = builder.create<arith::NegFOp>(operand);
Value zero = bcast(floatCst(builder, 0.0, elementType));
Value half = bcast(floatCst(builder, 0.5, elementType));
Value negOne = bcast(floatCst(builder, -1.0, elementType));
Value selR =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand, zero);
Value r = builder.create<arith::SelectOp>(selR, negOperand, operand);
Value chkConst = bcast(floatCst(builder, -0.5625, elementType));
Value firstPred =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, r, chkConst);

Value trueVal =
fma(bcast(floatCst(builder, 9.3282184640716537e-1, elementType)),
bcast(floatCst(builder, 1.6839188885261840e+0, elementType)),
builder.create<math::AsinOp>(r));

Value falseVal = builder.create<math::SqrtOp>(fma(half, r, half));
falseVal = builder.create<math::AsinOp>(falseVal);
falseVal = mul(bcast(floatCst(builder, 2.0, elementType)), falseVal);

r = builder.create<arith::SelectOp>(firstPred, trueVal, falseVal);

// Check whether the operand lies in between [-1.0, 0.0).
Value greaterThanNegOne =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OGE, operand, negOne);

Value lessThanZero =
builder.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);

Value betweenNegOneZero =
builder.create<arith::AndIOp>(greaterThanNegOne, lessThanZero);

trueVal = fma(bcast(floatCst(builder, 1.8656436928143307e+0, elementType)),
bcast(floatCst(builder, 1.6839188885261840e+0, elementType)),
builder.create<arith::NegFOp>(r));

Value finalVal =
builder.create<arith::SelectOp>(betweenNegOneZero, trueVal, r);

rewriter.replaceOp(op, finalVal);
return success();
}

//----------------------------------------------------------------------------//
// Erf approximation.
//----------------------------------------------------------------------------//
Expand Down Expand Up @@ -1505,12 +1652,13 @@ void mlir::populateMathPolynomialApproximationPatterns(
ReuseF32Expansion<math::SinOp>, ReuseF32Expansion<math::CosOp>>(
patterns.getContext());

patterns.add<AtanApproximation, Atan2Approximation, TanhApproximation,
LogApproximation, Log2Approximation, Log1pApproximation,
ErfPolynomialApproximation, ExpApproximation, ExpM1Approximation,
CbrtApproximation, SinAndCosApproximation<true, math::SinOp>,
SinAndCosApproximation<false, math::CosOp>>(
patterns.getContext());
patterns
.add<AtanApproximation, Atan2Approximation, TanhApproximation,
LogApproximation, Log2Approximation, Log1pApproximation,
ErfPolynomialApproximation, AsinPolynomialApproximation,
AcosPolynomialApproximation, ExpApproximation, ExpM1Approximation,
CbrtApproximation, SinAndCosApproximation<true, math::SinOp>,
SinAndCosApproximation<false, math::CosOp>>(patterns.getContext());
if (options.enableAvx2) {
patterns.add<RsqrtApproximation, ReuseF32Expansion<math::RsqrtOp>>(
patterns.getContext());
Expand Down
80 changes: 80 additions & 0 deletions mlir/test/mlir-cpu-runner/math-polynomial-approx.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -461,6 +461,84 @@ func.func @cos() {
return
}

// -------------------------------------------------------------------------- //
// Asin.
// -------------------------------------------------------------------------- //
func.func @asin_f32(%a : f32) {
%r = math.asin %a : f32
vector.print %r : f32
return
}

func.func @asin_3xf32(%a : vector<3xf32>) {
%r = math.asin %a : vector<3xf32>
vector.print %r : vector<3xf32>
return
}

func.func @asin() {
// CHECK: 0
%zero = arith.constant 0.0 : f32
call @asin_f32(%zero) : (f32) -> ()

// CHECK: -0.597406
%cst1 = arith.constant -0.5625 : f32
call @asin_f32(%cst1) : (f32) -> ()

// CHECK: -0.384397
%cst2 = arith.constant -0.375 : f32
call @asin_f32(%cst2) : (f32) -> ()

// CHECK: -0.25268
%cst3 = arith.constant -0.25 : f32
call @asin_f32(%cst3) : (f32) -> ()

// CHECK: 0.25268, 0.384397, 0.597406
%vec_x = arith.constant dense<[0.25, 0.375, 0.5625]> : vector<3xf32>
call @asin_3xf32(%vec_x) : (vector<3xf32>) -> ()

return
}

// -------------------------------------------------------------------------- //
// Acos.
// -------------------------------------------------------------------------- //
func.func @acos_f32(%a : f32) {
%r = math.acos %a : f32
vector.print %r : f32
return
}

func.func @acos_3xf32(%a : vector<3xf32>) {
%r = math.acos %a : vector<3xf32>
vector.print %r : vector<3xf32>
return
}

func.func @acos() {
// CHECK: 1.5708
%zero = arith.constant 0.0 : f32
call @acos_f32(%zero) : (f32) -> ()

// CHECK: 2.1682
%cst1 = arith.constant -0.5625 : f32
call @acos_f32(%cst1) : (f32) -> ()

// CHECK: 1.95519
%cst2 = arith.constant -0.375 : f32
call @acos_f32(%cst2) : (f32) -> ()

// CHECK: 1.82348
%cst3 = arith.constant -0.25 : f32
call @acos_f32(%cst3) : (f32) -> ()

// CHECK: 1.31812, 1.1864, 0.97339
%vec_x = arith.constant dense<[0.25, 0.375, 0.5625]> : vector<3xf32>
call @acos_3xf32(%vec_x) : (vector<3xf32>) -> ()

return
}

// -------------------------------------------------------------------------- //
// Atan.
// -------------------------------------------------------------------------- //
Expand Down Expand Up @@ -694,6 +772,8 @@ func.func @main() {
call @expm1(): () -> ()
call @sin(): () -> ()
call @cos(): () -> ()
call @asin(): () -> ()
call @acos(): () -> ()
call @atan() : () -> ()
call @atan2() : () -> ()
call @cbrt() : () -> ()
Expand Down