Skip to content

Upstream polynomial.ntt and polynomial.intt #90992

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
May 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 53 additions & 3 deletions mlir/include/mlir/Dialect/Polynomial/IR/Polynomial.td
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ def Polynomial_PolynomialAttr : Polynomial_Attr<"Polynomial", "polynomial"> {
#poly = #polynomial.polynomial<x**1024 + 1>
```
}];
let parameters = (ins "Polynomial":$polynomial);
let parameters = (ins "::mlir::polynomial::Polynomial":$polynomial);
let hasCustomAssemblyFormat = 1;
}

Expand Down Expand Up @@ -122,10 +122,19 @@ def Polynomial_RingAttr : Polynomial_Attr<"Ring", "ring"> {

let parameters = (ins
"Type": $coefficientType,
OptionalParameter<"IntegerAttr">: $coefficientModulus,
OptionalParameter<"PolynomialAttr">: $polynomialModulus
OptionalParameter<"::mlir::IntegerAttr">: $coefficientModulus,
OptionalParameter<"::mlir::polynomial::PolynomialAttr">: $polynomialModulus,
OptionalParameter<"::mlir::IntegerAttr">: $primitiveRoot
);

let builders = [
AttrBuilder<
(ins "::mlir::Type":$coefficientTy,
"::mlir::IntegerAttr":$coefficientModulusAttr,
"::mlir::polynomial::PolynomialAttr":$polynomialModulusAttr), [{
return $_get($_ctxt, coefficientTy, coefficientModulusAttr, polynomialModulusAttr, nullptr);
}]>
];
let hasCustomAssemblyFormat = 1;
}

Expand Down Expand Up @@ -416,4 +425,45 @@ def Polynomial_ConstantOp : Polynomial_Op<"constant", [Pure]> {
let assemblyFormat = "$input attr-dict `:` type($output)";
}

def Polynomial_NTTOp : Polynomial_Op<"ntt", [Pure]> {
let summary = "Computes point-value tensor representation of a polynomial.";
let description = [{
`polynomial.ntt` computes the forward integer Number Theoretic Transform
(NTT) on the input polynomial. It returns a tensor containing a point-value
representation of the input polynomial. The output tensor has shape equal
to the degree of the ring's `polynomialModulus`. The polynomial's RingAttr
is embedded as the encoding attribute of the output tensor.

Given an input polynomial `F(x)` over a ring whose `polynomialModulus` has
degree `n`, and a primitive `n`-th root of unity `omega_n`, the output is
the list of $n$ evaluations

`f[k] = F(omega[n]^k) ; k = {0, ..., n-1}`

The choice of primitive root is determined by subsequent lowerings.
}];
let arguments = (ins Polynomial_PolynomialType:$input);
let results = (outs RankedTensorOf<[AnyInteger]>:$output);
let assemblyFormat = "$input attr-dict `:` qualified(type($input)) `->` type($output)";
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nit: would functional-type work here instead of explicit arrows?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

IIUC this one avoids wrapping the sole input in parentheses in the assembly format.

let hasVerifier = 1;
}

def Polynomial_INTTOp : Polynomial_Op<"intt", [Pure]> {
let summary = "Computes the reverse integer Number Theoretic Transform (NTT).";
let description = [{
`polynomial.intt` computes the reverse integer Number Theoretic Transform
(INTT) on the input tensor. This is the inverse operation of the
`polynomial.ntt` operation.

The input tensor is interpreted as a point-value representation of the
output polynomial at powers of a primitive `n`-th root of unity (see
`polynomial.ntt`). The ring of the polynomial is taken from the required
encoding attribute of the tensor.
}];
let arguments = (ins RankedTensorOf<[AnyInteger]>:$input);
let results = (outs Polynomial_PolynomialType:$output);
let assemblyFormat = "$input attr-dict `:` qualified(type($input)) `->` type($output)";
let hasVerifier = 1;
}

#endif // POLYNOMIAL_OPS
18 changes: 17 additions & 1 deletion mlir/lib/Dialect/Polynomial/IR/PolynomialAttributes.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -202,11 +202,27 @@ Attribute RingAttr::parse(AsmParser &parser, Type type) {
polyAttr = attr;
}

Polynomial poly = polyAttr.getPolynomial();
APInt root(coefficientModulusAttr.getValue().getBitWidth(), 0);
IntegerAttr rootAttr = nullptr;
if (succeeded(parser.parseOptionalComma())) {
if (failed(parser.parseKeyword("primitiveRoot")) ||
failed(parser.parseEqual()))
return {};

ParseResult result = parser.parseInteger(root);
if (failed(result)) {
parser.emitError(parser.getCurrentLocation(), "invalid primitiveRoot");
return {};
}
rootAttr = IntegerAttr::get(coefficientModulusAttr.getType(), root);
}

if (failed(parser.parseGreater()))
return {};

return RingAttr::get(parser.getContext(), ty, coefficientModulusAttr,
polyAttr);
polyAttr, rootAttr);
}

} // namespace polynomial
Expand Down
79 changes: 79 additions & 0 deletions mlir/lib/Dialect/Polynomial/IR/PolynomialOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -104,3 +104,82 @@ LogicalResult MulScalarOp::verify() {

return success();
}

/// Test if a value is a primitive nth root of unity modulo cmod.
bool isPrimitiveNthRootOfUnity(const APInt &root, const unsigned n,
const APInt &cmod) {
// Root bitwidth may be 1 less then cmod.
APInt r = APInt(root).zext(cmod.getBitWidth());
assert(r.ule(cmod) && "root must be less than cmod");

APInt a = r;
for (size_t k = 1; k < n; k++) {
if (a.isOne())
return false;
a = (a * r).urem(cmod);
}
return a.isOne();
}

/// Verify that the types involved in an NTT or INTT operation are
/// compatible.
static LogicalResult verifyNTTOp(Operation *op, RingAttr ring,
RankedTensorType tensorType) {
Attribute encoding = tensorType.getEncoding();
if (!encoding) {
return op->emitOpError()
<< "expects a ring encoding to be provided to the tensor";
}
auto encodedRing = dyn_cast<RingAttr>(encoding);
if (!encodedRing) {
return op->emitOpError()
<< "the provided tensor encoding is not a ring attribute";
}

if (encodedRing != ring) {
return op->emitOpError()
<< "encoded ring type " << encodedRing
<< " is not equivalent to the polynomial ring " << ring;
}

unsigned polyDegree = ring.getPolynomialModulus().getPolynomial().getDegree();
ArrayRef<int64_t> tensorShape = tensorType.getShape();
bool compatible = tensorShape.size() == 1 && tensorShape[0] == polyDegree;
if (!compatible) {
InFlightDiagnostic diag = op->emitOpError()
<< "tensor type " << tensorType
<< " does not match output type " << ring;
diag.attachNote() << "the tensor must have shape [d] where d "
"is exactly the degree of the polynomialModulus of "
"the polynomial type's ring attribute";
return diag;
}

if (!ring.getPrimitiveRoot()) {
return op->emitOpError()
<< "ring type " << ring << " does not provide a primitive root "
<< "of unity, which is required to express an NTT";
}

if (!isPrimitiveNthRootOfUnity(ring.getPrimitiveRoot().getValue(), polyDegree,
ring.getCoefficientModulus().getValue())) {
return op->emitOpError()
<< "ring type " << ring << " has a primitiveRoot attribute '"
<< ring.getPrimitiveRoot()
<< "' that is not a primitive root of the coefficient ring";
}

return success();
}

LogicalResult NTTOp::verify() {
auto ring = getInput().getType().getRing();
auto tensorType = getOutput().getType();
return verifyNTTOp(this->getOperation(), ring, tensorType);
}

LogicalResult INTTOp::verify() {
auto tensorType = getInput().getType();
auto ring = getOutput().getType().getRing();
return verifyNTTOp(this->getOperation(), ring, tensorType);
}
16 changes: 15 additions & 1 deletion mlir/test/Dialect/Polynomial/ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,13 @@
#one_plus_x_squared = #polynomial.polynomial<1 + x**2>

#ideal = #polynomial.polynomial<-1 + x**1024>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=18, polynomialModulus=#ideal>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=256, polynomialModulus=#ideal, primitiveRoot=193>
!poly_ty = !polynomial.polynomial<#ring>

#ntt_poly = #polynomial.polynomial<-1 + x**8>
#ntt_ring = #polynomial.ring<coefficientType=i32, coefficientModulus=256, polynomialModulus=#ntt_poly, primitiveRoot=31>
!ntt_poly_ty = !polynomial.polynomial<#ntt_ring>

module {
func.func @test_multiply() -> !polynomial.polynomial<#ring1> {
%c0 = arith.constant 0 : index
Expand Down Expand Up @@ -79,4 +83,14 @@ module {
%1 = polynomial.constant <1 + x**2> : !polynomial.polynomial<#ring1>
return
}

func.func @test_ntt(%0 : !ntt_poly_ty) {
%1 = polynomial.ntt %0 : !ntt_poly_ty -> tensor<8xi32, #ntt_ring>
return
}

func.func @test_intt(%0 : tensor<8xi32, #ntt_ring>) {
%1 = polynomial.intt %0 : tensor<8xi32, #ntt_ring> -> !ntt_poly_ty
return
}
}
87 changes: 87 additions & 0 deletions mlir/test/Dialect/Polynomial/ops_errors.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -51,3 +51,90 @@ func.func @test_mul_scalar_wrong_type(%arg0: !ty) -> !ty {
%poly = polynomial.mul_scalar %arg0, %scalar : !ty, i32
return %poly : !ty
}

// -----

#my_poly = #polynomial.polynomial<-1 + x**1024>
#ring = #polynomial.ring<coefficientType=i16, coefficientModulus=256, polynomialModulus=#my_poly, primitiveRoot=31>
!poly_ty = !polynomial.polynomial<#ring>

// CHECK-NOT: @test_invalid_ntt
// CHECK-NOT: polynomial.ntt
func.func @test_invalid_ntt(%0 : !poly_ty) {
// expected-error@below {{expects a ring encoding to be provided to the tensor}}
%1 = polynomial.ntt %0 : !poly_ty -> tensor<1024xi32>
return
}

// -----

#my_poly = #polynomial.polynomial<-1 + x**1024>
#ring = #polynomial.ring<coefficientType=i16, coefficientModulus=256, polynomialModulus=#my_poly, primitiveRoot=31>
!poly_ty = !polynomial.polynomial<#ring>

// CHECK-NOT: @test_invalid_ntt
// CHECK-NOT: polynomial.ntt
func.func @test_invalid_ntt(%0 : !poly_ty) {
// expected-error@below {{tensor encoding is not a ring attribute}}
%1 = polynomial.ntt %0 : !poly_ty -> tensor<1024xi32, #my_poly>
return
}

// -----

#my_poly = #polynomial.polynomial<-1 + x**1024>
#ring = #polynomial.ring<coefficientType=i16, coefficientModulus=256, polynomialModulus=#my_poly>
#ring1 = #polynomial.ring<coefficientType=i16, coefficientModulus=257, polynomialModulus=#my_poly, primitiveRoot=31>
!poly_ty = !polynomial.polynomial<#ring>

// CHECK-NOT: @test_invalid_intt
// CHECK-NOT: polynomial.intt
func.func @test_invalid_intt(%0 : tensor<1024xi32, #ring1>) {
// expected-error@below {{not equivalent to the polynomial ring}}
%1 = polynomial.intt %0 : tensor<1024xi32, #ring1> -> !poly_ty
return
}

// -----

#my_poly = #polynomial.polynomial<-1 + x**1024>
#ring = #polynomial.ring<coefficientType=i16, coefficientModulus=256, polynomialModulus=#my_poly, primitiveRoot=31>
!poly_ty = !polynomial.polynomial<#ring>

// CHECK-NOT: @test_invalid_intt
// CHECK-NOT: polynomial.intt
func.func @test_invalid_intt(%0 : tensor<1025xi32, #ring>) {
// expected-error@below {{does not match output type}}
// expected-note@below {{exactly the degree of the polynomialModulus of the polynomial type's ring attribute}}
%1 = polynomial.intt %0 : tensor<1025xi32, #ring> -> !poly_ty
return
}

// -----

#my_poly = #polynomial.polynomial<-1 + x**1024>
#ring = #polynomial.ring<coefficientType=i16, coefficientModulus=256, polynomialModulus=#my_poly>
!poly_ty = !polynomial.polynomial<#ring>

// CHECK-NOT: @test_invalid_ntt
// CHECK-NOT: polynomial.ntt
func.func @test_invalid_ntt(%0 : !poly_ty) {
// expected-error@below {{does not provide a primitive root of unity, which is required to express an NTT}}
%1 = polynomial.ntt %0 : !poly_ty -> tensor<1024xi32, #ring>
return
}

// -----

#my_poly = #polynomial.polynomial<-1 + x**8>
// A valid root is 31
#ring = #polynomial.ring<coefficientType=i16, coefficientModulus=256, polynomialModulus=#my_poly, primitiveRoot=32>
!poly_ty = !polynomial.polynomial<#ring>

// CHECK-NOT: @test_invalid_intt
// CHECK-NOT: polynomial.intt
func.func @test_invalid_intt(%0 : tensor<8xi32, #ring>) {
// expected-error@below {{has a primitiveRoot attribute '32 : i16' that is not a primitive root of the coefficient ring}}
%1 = polynomial.intt %0 : tensor<8xi32, #ring> -> !poly_ty
return
}