Skip to content

[MLIR][Linalg] Ternary Op & Linalg select #91461

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
May 14, 2024

Conversation

kurapov-peter
Copy link
Contributor

Following #90236, adding select to linalg as arith.select. No implicit type casting.
OpDSL doesn't expose a type restriction for bool, but I saw no reason in adding it (put a separate symbolic type and check the semantics in the builder).

Copy link

github-actions bot commented May 8, 2024

Thank you for submitting a Pull Request (PR) to the LLVM Project!

This PR will be automatically labeled and the relevant teams will be
notified.

If you wish to, you can add reviewers by using the "Reviewers" section on this page.

If this is not working for you, it is probably because you do not have write
permissions for the repository. In which case you can instead tag reviewers by
name in a comment by using @ followed by their GitHub username.

If you have received no comments on your PR for a week, you can request a review
by "ping"ing the PR by adding a comment “Ping”. The common courtesy "ping" rate
is once a week. Please remember that you are asking for valuable time from other developers.

If you have further questions, they may be answered by the LLVM GitHub User Guide.

You can also ask questions in a comment on this PR, on the LLVM Discord or on the forums.

@llvmbot llvmbot added mlir:core MLIR Core Infrastructure mlir:linalg mlir:python MLIR Python bindings mlir labels May 8, 2024
@llvmbot
Copy link
Member

llvmbot commented May 8, 2024

@llvm/pr-subscribers-mlir

@llvm/pr-subscribers-mlir-core

Author: Petr Kurapov (kurapov-peter)

Changes

Following #90236, adding select to linalg as arith.select. No implicit type casting.
OpDSL doesn't expose a type restriction for bool, but I saw no reason in adding it (put a separate symbolic type and check the semantics in the builder).


Full diff: https://github.com/llvm/llvm-project/pull/91461.diff

11 Files Affected:

  • (modified) mlir/include/mlir/Dialect/Linalg/IR/LinalgBase.td (+3)
  • (modified) mlir/include/mlir/Dialect/Linalg/IR/LinalgEnums.td (+6)
  • (modified) mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml (+57)
  • (modified) mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp (+19)
  • (modified) mlir/python/mlir/dialects/linalg/opdsl/lang/comprehension.py (+54-2)
  • (modified) mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py (+7)
  • (modified) mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py (+20)
  • (modified) mlir/test/Dialect/Linalg/generalize-named-ops.mlir (+25)
  • (modified) mlir/test/Dialect/Linalg/named-ops-fail.mlir (+16)
  • (modified) mlir/test/Dialect/Linalg/named-ops.mlir (+22)
  • (modified) mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-yaml-gen.cpp (+9-1)
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgBase.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgBase.td
index e87e8b5600107..73f984dc072d3 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgBase.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgBase.td
@@ -68,6 +68,9 @@ def UnaryFnAttr : EnumAttr<Linalg_Dialect, UnaryFn, "unary_fn"> {
 def BinaryFnAttr : EnumAttr<Linalg_Dialect, BinaryFn, "binary_fn"> {
   let assemblyFormat = "`<` $value `>`";
 }
+def TernaryFnAttr : EnumAttr<Linalg_Dialect, TernaryFn, "ternary_fn"> {
+  let assemblyFormat = "`<` $value `>`";
+}
 def TypeFnAttr : EnumAttr<Linalg_Dialect, TypeFn, "type_fn"> {
   let assemblyFormat = "`<` $value `>`";
 }
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgEnums.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgEnums.td
index 6b4b073fc6724..e615876a95d05 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgEnums.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgEnums.td
@@ -49,6 +49,12 @@ def BinaryFn : I32EnumAttr<"BinaryFn", "", [
   let genSpecializedAttr = 0;
   let cppNamespace = "::mlir::linalg";
 }
+def TernaryFn : I32EnumAttr<"TernaryFn", "", [
+  I32EnumAttrCase<"select", 0>
+]> {
+  let genSpecializedAttr = 0;
+  let cppNamespace = "::mlir::linalg";
+}
 def TypeFn : I32EnumAttr<"TypeFn", "", [
   I32EnumAttrCase<"cast_signed", 0>,
   I32EnumAttrCase<"cast_unsigned", 1>
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index 584bfcd8b59dc..eb7dd37010a67 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -1008,6 +1008,63 @@ structured_op: !LinalgStructuredOpConfig
         - !ScalarExpression
           scalar_arg: rhs
 --- !LinalgOpConfig
+metadata: !LinalgOpMetadata
+  name: select
+  cpp_class_name: SelectOp
+  doc: |-
+    Chooses one value based on a binary condition supplied as its first operand.
+
+    The shapes and element types must be identical. The appropriate casts,
+    broadcasts and reductions should be done previously to calling this op.
+
+    This means reduction/broadcast/element cast semantics is explicit. Further
+    passes can take that into account when lowering this code. For example,
+    a `linalg.broadcast` + `linalg.select` sequence can be lowered to a
+    `linalg.generic` with different affine maps for the two operands.
+structured_op: !LinalgStructuredOpConfig
+  args:
+  - !LinalgOperandDefConfig
+    name: cond
+    kind: input_tensor
+    type_var: U
+    shape_map: affine_map<() -> ()>
+  - !LinalgOperandDefConfig
+    name: lhs
+    kind: input_tensor
+    type_var: T1
+    shape_map: affine_map<() -> ()>
+  - !LinalgOperandDefConfig
+    name: rhs
+    kind: input_tensor
+    type_var: T1
+    shape_map: affine_map<() -> ()>
+  - !LinalgOperandDefConfig
+    name: O
+    kind: output_tensor
+    type_var: T1
+    shape_map: affine_map<() -> ()>
+  indexing_maps: !LinalgIndexingMapsConfig
+    static_indexing_maps:
+    - affine_map<() -> ()>
+    - affine_map<() -> ()>
+    - affine_map<() -> ()>
+    - affine_map<() -> ()>
+  iterator_types: []
+  assignments:
+  - !ScalarAssign
+    arg: O
+    value: !ScalarExpression
+      scalar_fn:
+        kind: ternary
+        fn_name: select
+        operands:
+        - !ScalarExpression
+          scalar_arg: cond
+        - !ScalarExpression
+          scalar_arg: lhs
+        - !ScalarExpression
+          scalar_arg: rhs
+--- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: matmul
   cpp_class_name: MatmulOp
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index e5f83331baf81..6a5f25a7605f1 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -492,6 +492,25 @@ class RegionBuilderHelper {
     llvm_unreachable("unsupported binary function");
   }
 
+  // Build the ternary functions defined by OpDSL.
+  Value buildTernaryFn(TernaryFn ternaryFn, Value arg0, Value arg1,
+                       Value arg2) {
+    bool headBool =
+        isInteger(arg0) && arg0.getType().getIntOrFloatBitWidth() == 1;
+    bool tailFloatingPoint =
+        isFloatingPoint(arg0) && isFloatingPoint(arg1) && isFloatingPoint(arg2);
+    bool tailInteger = isInteger(arg0) && isInteger(arg1) && isInteger(arg1);
+    OpBuilder::InsertionGuard g(builder);
+    builder.setInsertionPointToEnd(&block);
+    switch (ternaryFn) {
+    case TernaryFn::select:
+      if (!headBool && !(tailFloatingPoint || tailInteger))
+        llvm_unreachable("unsupported non numeric type");
+      return builder.create<arith::SelectOp>(arg0.getLoc(), arg0, arg1, arg2);
+    }
+    llvm_unreachable("unsupported ternary function");
+  }
+
   // Build the type functions defined by OpDSL.
   Value buildTypeFn(TypeFn typeFn, Type toType, Value operand) {
     switch (typeFn) {
diff --git a/mlir/python/mlir/dialects/linalg/opdsl/lang/comprehension.py b/mlir/python/mlir/dialects/linalg/opdsl/lang/comprehension.py
index bb43ebf2b6923..880dcb7250b96 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/lang/comprehension.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/lang/comprehension.py
@@ -262,7 +262,8 @@ def __repr__(self):
 class FunctionKind(Enum):
     UNARY = 0
     BINARY = 1
-    TYPE = 2
+    TERNARY = 2
+    TYPE = 3
 
 
 class UnaryFnType:
@@ -339,6 +340,30 @@ class BinaryFn:
     powf = BinaryFnType("powf")
 
 
+class TernaryFnType:
+    """Ternary function.
+
+    A bterary function takes three tensor expressions and returns the
+    function evaluation result.
+    """
+
+    def __init__(self, fn_name: str):
+        self.fn_name = fn_name
+
+    def __call__(self, arg0: TensorExpression, arg1: TensorExpression, arg2: TensorExpression) -> "TensorFn":
+        return TensorFn(FunctionKind.TERNARY, self.fn_name, None, None, [arg0, arg1, arg2])
+
+    def __repr__(self):
+        return f"{self.fn_name}"
+
+
+class TernaryFn:
+    """Ternary function namespace.
+    """
+
+    select = TernaryFnType("select")
+
+
 class TypeFnType:
     """Type conversion function.
 
@@ -437,7 +462,8 @@ class OperandKind(Enum):
     INDEX_ATTR = 3
     UNARY_FN_ATTR = 4
     BINARY_FN_ATTR = 5
-    TYPE_FN_ATTR = 6
+    TERNARY_FN_ATTR = 6
+    TYPE_FN_ATTR = 7
 
 
 class OperandDef:
@@ -489,6 +515,7 @@ def is_attribute(self) -> bool:
             self.kind == OperandKind.INDEX_ATTR
             or self.kind == OperandKind.UNARY_FN_ATTR
             or self.kind == OperandKind.BINARY_FN_ATTR
+            or self.kind == OperandKind.TERNARY_FN_ATTR
             or self.kind == OperandKind.TYPE_FN_ATTR
         )
 
@@ -670,6 +697,31 @@ def __getitem__(self, reduce_dims: Tuple[DimDef]) -> ReduceFnUse:
         return ReduceFnUse(None, self, *reduce_dims)
 
 
+class TernaryFnAttrDef:
+    """Ternary function attribute definition.
+
+    Ternary function attributes provide a way to make the arithmetic computation
+    parametrizable. Every attribute specifies a default Ternary function
+    that may be overwritten at operation instantiation time.
+    """
+
+    def __init__(self, default: "TernaryFnType"):
+        if not isinstance(default, TernaryFnType):
+            raise ValueError(
+                f"TernaryFnAttrDef requires default of type TernaryFnType "
+                f"but got {default}"
+            )
+        self.operand_def = OperandDef(
+            OperandKind.TERNARY_FN_ATTR, default_fn=default.fn_name
+        )
+
+    def __call__(self, arg0: TensorExpression, arg1: TensorExpression) -> TensorFn:
+        return TensorFn(FunctionKind.TERNARY, None, self.operand_def, None, [arg0, arg1])
+
+    def __getitem__(self, reduce_dims: Tuple[DimDef]) -> ReduceFnUse:
+        return ReduceFnUse(None, self, *reduce_dims)
+
+
 class TypeFnAttrDef:
     """Type conversion function attribute definition.
 
diff --git a/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py b/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py
index f91fc8b716008..845b533db52a9 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/lang/emitter.py
@@ -60,6 +60,7 @@ def prepare_common_structured_op(
         in [
             OperandKind.UNARY_FN_ATTR,
             OperandKind.BINARY_FN_ATTR,
+            OperandKind.TERNARY_FN_ATTR,
             OperandKind.TYPE_FN_ATTR,
         ]
     ]
@@ -180,6 +181,12 @@ def prepare_common_structured_op(
                         f"Attribute {fn_attr.name} needs to be of type "
                         f"BinaryFnType but got {type(attr_val)}"
                     )
+            elif attr_kind == OperandKind.TERNARY_FN_ATTR:
+                if not isinstance(fn, TernaryFnType):
+                    raise ValueError(
+                        f"Attribute {fn_attr.name} needs to be of type "
+                        f"TernaryFnType but got {type(attr_val)}"
+                    )
             else:
                 if not isinstance(fn, TypeFnType):
                     raise ValueError(
diff --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index ca2bb0c5f7f8a..d73428a0f4df3 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -351,6 +351,26 @@ def powf(
     O[None] = BinaryFn.powf(lhs[None], rhs[None])
 
 
+@linalg_structured_op
+def select(
+    cond=TensorDef(U),
+    lhs=TensorDef(T1),
+    rhs=TensorDef(T1),
+    O=TensorDef(T1, output=True),
+):
+    """Chooses one value based on a binary condition supplied as its first operand.
+
+    The shapes and element types must be identical. The appropriate casts,
+    broadcasts and reductions should be done previously to calling this op.
+
+    This means reduction/broadcast/element cast semantics is explicit. Further
+    passes can take that into account when lowering this code. For example,
+    a `linalg.broadcast` + `linalg.select` sequence can be lowered to a
+    `linalg.generic` with different affine maps for the two operands.
+    """
+    O[None] = TernaryFn.select(cond[None], lhs[None], rhs[None])
+
+
 @linalg_structured_op
 def matmul(
     A=TensorDef(T1, S.M, S.K),
diff --git a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
index 667ea3c18c8ad..4f43ec2c9e1ce 100644
--- a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
@@ -791,6 +791,31 @@ func.func @generalize_powf(%lhs: memref<7x14x21xf32>, %rhs: memref<7x14x21xf32>,
 
 // -----
 
+func.func @generalize_select(%cond: memref<7x14x21xi1>, %lhs: memref<7x14x21xf32>, %rhs: memref<7x14x21xf32>,
+                              %out: memref<7x14x21xf32>) {
+  linalg.select ins(%cond, %lhs, %rhs: memref<7x14x21xi1>, memref<7x14x21xf32>, memref<7x14x21xf32>)
+                outs(%out: memref<7x14x21xf32>)
+  return
+}
+
+// CHECK: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
+
+// CHECK: func @generalize_select
+// CHECK-SAME: (%[[COND:.+]]: memref<7x14x21xi1>, %[[LHS:.+]]: memref<7x14x21xf32>, %[[RHS:.+]]: memref<7x14x21xf32>,
+// CHECK-SAME:  %[[OUT:.+]]: memref<7x14x21xf32>)
+
+// CHECK: linalg.generic
+// CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]], #[[MAP]], #[[MAP]]]
+// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"]}
+// CHECK-SAME:  ins(%[[COND]], %[[LHS]], %[[RHS]] : memref<7x14x21xi1>, memref<7x14x21xf32>, memref<7x14x21xf32>)
+// CHECK-SAME: outs(%[[OUT]] : memref<7x14x21xf32>)
+
+// CHECK:         ^{{.+}}(%[[BBARG0:.+]]: i1, %[[BBARG1:.+]]: f32, %[[BBARG2:.+]]: f32, %[[BBARG3:.+]]: f32)
+// CHECK-NEXT:      %[[select:.+]] = arith.select %[[BBARG0]], %[[BBARG1]], %[[BBARG2]] : f32
+// CHECK-NEXT:      linalg.yield %[[select]] : f32
+
+
+// -----
 
 // CHECK-LABEL: func @fill_tensor
 func.func @fill_tensor(%f: f32, %v: vector<2x4xf32>) -> (tensor<f32>, tensor<vector<2x4xf32>>) {
diff --git a/mlir/test/Dialect/Linalg/named-ops-fail.mlir b/mlir/test/Dialect/Linalg/named-ops-fail.mlir
index e92a77aa7ad05..552a0abaa797c 100644
--- a/mlir/test/Dialect/Linalg/named-ops-fail.mlir
+++ b/mlir/test/Dialect/Linalg/named-ops-fail.mlir
@@ -334,3 +334,19 @@ func.func @powf_broadcast(%arg0: memref<8x16xf32>, %arg1: memref<4x8x16xf32>, %a
   return
 }
 
+// -----
+
+func.func @select_type_cast(%arg0: memref<4x8x16xi1>, %arg1: memref<4x8x16xf16>, %arg2: memref<4x8x16xf32>, %arg3: memref<4x8x16xf32>) {
+  // CHECK: op failed to verify that all of {true_value, false_value, result} have same type
+  linalg.select ins(%arg0, %arg1, %arg2 : memref<4x8x16xi1>, memref<4x8x16xf16>, memref<4x8x16xf32>) outs(%arg3: memref<4x8x16xf32>)
+  return
+}
+
+// -----
+
+func.func @select_wrong_condition_type(%arg0: memref<4x8x16xf32>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>, %arg3: memref<4x8x16xf32>) {
+  // CHECK: op operand #0 must be bool-like, but got 'f32'
+  linalg.select ins(%arg0, %arg1, %arg2 : memref<4x8x16xf32>, memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg3: memref<4x8x16xf32>)
+  return
+}
+
diff --git a/mlir/test/Dialect/Linalg/named-ops.mlir b/mlir/test/Dialect/Linalg/named-ops.mlir
index fefe5578947f0..cecd0033b7765 100644
--- a/mlir/test/Dialect/Linalg/named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/named-ops.mlir
@@ -1924,3 +1924,25 @@ func.func @fill_tensor(%f: f32, %v: vector<2x4xf32>) -> (tensor<f32>, tensor<vec
   %1 = linalg.fill ins(%v : vector<2x4xf32>) outs(%e1 : tensor<vector<2x4xf32>>) -> tensor<vector<2x4xf32>>
   return %0, %1: tensor<f32>, tensor<vector<2x4xf32>>
 }
+
+// -----
+
+// CHECK-LABEL: func @select_dynamic
+func.func @select_dynamic(%arg0: memref<?x?x?xi1>, %arg1: memref<?x?x?xf32>, %arg2: memref<?x?x?xf32>, %arg3: memref<?x?x?xf32>) {
+  // CHECK: linalg.select
+  // CHECK-SAME: ins(%{{.+}}, %{{.+}}, %{{.+}} : memref<?x?x?xi1>, memref<?x?x?xf32>, memref<?x?x?xf32>)
+  // CHECK-SAME: outs(%{{.+}} : memref<?x?x?xf32>)
+  linalg.select ins(%arg0, %arg1, %arg2 : memref<?x?x?xi1>, memref<?x?x?xf32>, memref<?x?x?xf32>) outs(%arg3: memref<?x?x?xf32>)
+  return
+}
+
+// -----
+
+// CHECK-LABEL: func @select_static
+func.func @select_static(%arg0: memref<4x8x16xi1>, %arg1: memref<4x8x16xf32>, %arg2: memref<4x8x16xf32>, %arg3: memref<4x8x16xf32>) {
+  // CHECK: linalg.select
+  // CHECK-SAME: ins(%{{.+}}, %{{.+}}, %{{.+}} : memref<4x8x16xi1>, memref<4x8x16xf32>, memref<4x8x16xf32>)
+  // CHECK-SAME: outs(%{{.+}} : memref<4x8x16xf32>)
+  linalg.select ins(%arg0, %arg1, %arg2 : memref<4x8x16xi1>, memref<4x8x16xf32>, memref<4x8x16xf32>) outs(%arg3: memref<4x8x16xf32>)
+  return
+}
diff --git a/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-yaml-gen.cpp b/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-yaml-gen.cpp
index fe6ad15041126..37240164c377e 100644
--- a/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-yaml-gen.cpp
+++ b/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-yaml-gen.cpp
@@ -70,6 +70,7 @@ enum class LinalgOperandDefKind {
   IndexAttr,
   UnaryFnAttr,
   BinaryFnAttr,
+  TernaryFnAttr,
   TypeFnAttr
 };
 
@@ -94,7 +95,7 @@ struct LinalgIndexingMapsConfig {
 
 struct ScalarExpression;
 
-enum class ScalarFnKind { Unary, Binary, Type };
+enum class ScalarFnKind { Unary, Binary, Ternary, Type };
 
 struct ScalarFn {
   ScalarFnKind kind;
@@ -214,6 +215,7 @@ struct ScalarEnumerationTraits<LinalgOperandDefKind> {
     io.enumCase(value, "index_attr", LinalgOperandDefKind::IndexAttr);
     io.enumCase(value, "unary_fn_attr", LinalgOperandDefKind::UnaryFnAttr);
     io.enumCase(value, "binary_fn_attr", LinalgOperandDefKind::BinaryFnAttr);
+    io.enumCase(value, "ternary_fn_attr", LinalgOperandDefKind::TernaryFnAttr);
     io.enumCase(value, "type_fn_attr", LinalgOperandDefKind::TypeFnAttr);
   }
 };
@@ -284,6 +286,7 @@ struct ScalarEnumerationTraits<ScalarFnKind> {
   static void enumeration(IO &io, ScalarFnKind &value) {
     io.enumCase(value, "unary", ScalarFnKind::Unary);
     io.enumCase(value, "binary", ScalarFnKind::Binary);
+    io.enumCase(value, "ternary", ScalarFnKind::Ternary);
     io.enumCase(value, "type", ScalarFnKind::Type);
   }
 };
@@ -441,6 +444,7 @@ static ScalarAssign *findAssignment(StringRef name,
 static bool isFunctionAttribute(LinalgOperandDefKind kind) {
   return kind == LinalgOperandDefKind::UnaryFnAttr ||
          kind == LinalgOperandDefKind::BinaryFnAttr ||
+         kind == LinalgOperandDefKind::TernaryFnAttr ||
          kind == LinalgOperandDefKind::TypeFnAttr;
 }
 
@@ -456,6 +460,8 @@ std::string convertOperandKindToEnumName(LinalgOperandDefKind kind) {
     return std::string("UnaryFn");
   case LinalgOperandDefKind::BinaryFnAttr:
     return std::string("BinaryFn");
+  case LinalgOperandDefKind::TernaryFnAttr:
+    return std::string("TernaryFn");
   case LinalgOperandDefKind::TypeFnAttr:
     return std::string("TypeFn");
   default:
@@ -471,6 +477,8 @@ std::string convertFunctionKindToEnumName(ScalarFnKind kind) {
     return std::string("UnaryFn");
   case ScalarFnKind::Binary:
     return std::string("BinaryFn");
+  case ScalarFnKind::Ternary:
+    return std::string("TernaryFn");
   case ScalarFnKind::Type:
     return std::string("TypeFn");
   }

Copy link

github-actions bot commented May 8, 2024

✅ With the latest revision this PR passed the Python code formatter.

@rengolin
Copy link
Member

ping

Copy link
Member

@matthias-springer matthias-springer left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm not too familiar with the Op DSL part, but this op makes sense to me.

There is actually a TODO in the BufferizableOpInterface implementation of arith.select: only i1 conditions are supported. That is because there is no efficient way to bufferize arith.select with tensor conditions because the op is not in destination style. It is good to have a linalg.select destination-style op that can bufferize efficiently.

@rengolin rengolin merged commit e7d09ce into llvm:main May 14, 2024
Copy link

@kurapov-peter Congratulations on having your first Pull Request (PR) merged into the LLVM Project!

Your changes will be combined with recent changes from other authors, then tested
by our build bots. If there is a problem with a build, you may receive a report in an email or a comment on this PR.

Please check whether problems have been caused by your change specifically, as
the builds can include changes from many authors. It is not uncommon for your
change to be included in a build that fails due to someone else's changes, or
infrastructure issues.

How to do this, and the rest of the post-merge process, is covered in detail here.

If your change does cause a problem, it may be reverted, or you can revert it yourself.
This is a normal part of LLVM development. You can fix your changes and open a new PR to merge them again.

If you don't get any reports, no action is required from you. Your changes are working as expected, well done!

@kurapov-peter kurapov-peter deleted the linalg-select branch May 14, 2024 12:24
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
mlir:core MLIR Core Infrastructure mlir:linalg mlir:python MLIR Python bindings mlir
Projects
None yet
Development

Successfully merging this pull request may close these issues.

6 participants