Skip to content

[MLIR][Python] add ctype python binding support for bf16 #92489

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
May 30, 2024
Merged
19 changes: 19 additions & 0 deletions mlir/python/mlir/runtime/np_to_memref.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,12 @@
import numpy as np
import ctypes

try:
import ml_dtypes
except ModuleNotFoundError:
# The third-party ml_dtypes provides some optional low precision data-types for NumPy.
ml_dtypes = None


class C128(ctypes.Structure):
"""A ctype representation for MLIR's Double Complex."""
Expand All @@ -26,6 +32,12 @@ class F16(ctypes.Structure):
_fields_ = [("f16", ctypes.c_int16)]


class BF16(ctypes.Structure):
"""A ctype representation for MLIR's BFloat16."""

_fields_ = [("bf16", ctypes.c_int16)]


# https://stackoverflow.com/questions/26921836/correct-way-to-test-for-numpy-dtype
def as_ctype(dtp):
"""Converts dtype to ctype."""
Expand All @@ -35,6 +47,8 @@ def as_ctype(dtp):
return C64
if dtp == np.dtype(np.float16):
return F16
if ml_dtypes is not None and dtp == ml_dtypes.bfloat16:
return BF16
return np.ctypeslib.as_ctypes_type(dtp)


Expand All @@ -46,6 +60,11 @@ def to_numpy(array):
return array.view("complex64")
if array.dtype == F16:
return array.view("float16")
assert not (
array.dtype == BF16 and ml_dtypes is None
), f"bfloat16 requires the ml_dtypes package, please run:\n\npip install ml_dtypes\n"
if array.dtype == BF16:
return array.view("bfloat16")
return array


Expand Down
3 changes: 2 additions & 1 deletion mlir/python/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
numpy>=1.19.5, <=1.26
pybind11>=2.9.0, <=2.10.3
PyYAML>=5.3.1, <=6.0.1
PyYAML>=5.3.1, <=6.0.1
ml_dtypes # provides several NumPy dtype extensions, including the bf16
40 changes: 40 additions & 0 deletions mlir/test/python/execution_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from mlir.passmanager import *
from mlir.execution_engine import *
from mlir.runtime import *
from ml_dtypes import bfloat16


# Log everything to stderr and flush so that we have a unified stream to match
Expand Down Expand Up @@ -521,6 +522,45 @@ def testComplexUnrankedMemrefAdd():
run(testComplexUnrankedMemrefAdd)


# Test bf16 memrefs
# CHECK-LABEL: TEST: testBF16Memref
def testBF16Memref():
with Context():
module = Module.parse(
"""
module {
func.func @main(%arg0: memref<1xbf16>,
%arg1: memref<1xbf16>) attributes { llvm.emit_c_interface } {
%0 = arith.constant 0 : index
%1 = memref.load %arg0[%0] : memref<1xbf16>
memref.store %1, %arg1[%0] : memref<1xbf16>
return
}
} """
)

arg1 = np.array([0.5]).astype(bfloat16)
arg2 = np.array([0.0]).astype(bfloat16)

arg1_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg1))
)
arg2_memref_ptr = ctypes.pointer(
ctypes.pointer(get_ranked_memref_descriptor(arg2))
)

execution_engine = ExecutionEngine(lowerToLLVM(module))
execution_engine.invoke("main", arg1_memref_ptr, arg2_memref_ptr)

# test to-numpy utility
# CHECK: [0.5]
npout = ranked_memref_to_numpy(arg2_memref_ptr[0])
log(npout)


run(testBF16Memref)


# Test addition of two 2d_memref
# CHECK-LABEL: TEST: testDynamicMemrefAdd2D
def testDynamicMemrefAdd2D():
Expand Down
Loading