Skip to content

[mlir][polynomial] use typed attributes for polynomial.constant op #92818

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
May 22, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions mlir/include/mlir/Dialect/Polynomial/IR/Polynomial.td
Original file line number Diff line number Diff line change
Expand Up @@ -52,8 +52,8 @@ def Polynomial_AddOp : Polynomial_BinaryOp<"add", [Commutative]> {
// add two polynomials modulo x^1024 - 1
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.int_polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%1 = polynomial.constant #polynomial.int_polynomial<x**5 - x + 1> : !polynomial.polynomial<#ring>
%0 = polynomial.constant {value=#polynomial.int_polynomial<1 + x**2>} : !polynomial.polynomial<#ring>
%1 = polynomial.constant {value=#polynomial.int_polynomial<x**5 - x + 1>} : !polynomial.polynomial<#ring>
%2 = polynomial.add %0, %1 : !polynomial.polynomial<#ring>
```
}];
Expand All @@ -76,8 +76,8 @@ def Polynomial_SubOp : Polynomial_BinaryOp<"sub"> {
// subtract two polynomials modulo x^1024 - 1
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.int_polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%1 = polynomial.constant #polynomial.int_polynomial<x**5 - x + 1> : !polynomial.polynomial<#ring>
%0 = polynomial.constant {value=#polynomial.int_polynomial<1 + x**2>} : !polynomial.polynomial<#ring>
%1 = polynomial.constant {value=#polynomial.int_polynomial<x**5 - x + 1>} : !polynomial.polynomial<#ring>
%2 = polynomial.sub %0, %1 : !polynomial.polynomial<#ring>
```
}];
Expand All @@ -101,8 +101,8 @@ def Polynomial_MulOp : Polynomial_BinaryOp<"mul", [Commutative]> {
// multiply two polynomials modulo x^1024 - 1
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.int_polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%1 = polynomial.constant #polynomial.int_polynomial<x**5 - x + 1> : !polynomial.polynomial<#ring>
%0 = polynomial.constant {value=#polynomial.int_polynomial<1 + x**2>} : !polynomial.polynomial<#ring>
%1 = polynomial.constant {value=#polynomial.int_polynomial<x**5 - x + 1>} : !polynomial.polynomial<#ring>
%2 = polynomial.mul %0, %1 : !polynomial.polynomial<#ring>
```
}];
Expand All @@ -126,7 +126,7 @@ def Polynomial_MulScalarOp : Polynomial_Op<"mul_scalar", [
// multiply two polynomials modulo x^1024 - 1
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.int_polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%0 = polynomial.constant {value=#polynomial.int_polynomial<1 + x**2>} : !polynomial.polynomial<#ring>
%1 = arith.constant 3 : i32
%2 = polynomial.mul_scalar %0, %1 : !polynomial.polynomial<#ring>, i32
```
Expand Down Expand Up @@ -157,7 +157,7 @@ def Polynomial_LeadingTermOp: Polynomial_Op<"leading_term"> {
```mlir
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.int_polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%0 = polynomial.constant {value=#polynomial.int_polynomial<1 + x**2>} : !polynomial.polynomial<#ring>
%1, %2 = polynomial.leading_term %0 : !polynomial.polynomial<#ring> -> (index, i32)
```
}];
Expand Down Expand Up @@ -286,10 +286,10 @@ def Polynomial_ConstantOp : Op<Polynomial_Dialect, "constant", [Pure]> {
```mlir
#poly = #polynomial.int_polynomial<x**1024 - 1>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=65536:i32, polynomialModulus=#poly>
%0 = polynomial.constant #polynomial.int_polynomial<1 + x**2> : !polynomial.polynomial<#ring>
%0 = polynomial.constant {value=#polynomial.int_polynomial<1 + x**2>} : !polynomial.polynomial<#ring>

#float_ring = #polynomial.ring<coefficientType=f32>
%0 = polynomial.constant #polynomial.float_polynomial<0.5 + 1.3e06 x**2> : !polynomial.polynomial<#float_ring>
%0 = polynomial.constant {value=#polynomial.float_polynomial<0.5 + 1.3e06 x**2>} : !polynomial.polynomial<#float_ring>
```
}];
let arguments = (ins Polynomial_AnyPolynomialAttr:$value);
Expand Down
6 changes: 3 additions & 3 deletions mlir/include/mlir/Dialect/Polynomial/IR/PolynomialDialect.td
Original file line number Diff line number Diff line change
Expand Up @@ -33,18 +33,18 @@ def Polynomial_Dialect : Dialect {
```mlir
// A constant polynomial in a ring with i32 coefficients and no polynomial modulus
#ring = #polynomial.ring<coefficientType=i32>
%a = polynomial.constant <1 + x**2 - 3x**3> : polynomial.polynomial<#ring>
%a = polynomial.constant {value=#polynomial.int_polynomial<1 + x**2 - 3x**3>} : polynomial.polynomial<#ring>

// A constant polynomial in a ring with i32 coefficients, modulo (x^1024 + 1)
#modulus = #polynomial.int_polynomial<1 + x**1024>
#ring = #polynomial.ring<coefficientType=i32, polynomialModulus=#modulus>
%a = polynomial.constant <1 + x**2 - 3x**3> : polynomial.polynomial<#ring>
%a = polynomial.constant {value=#polynomial.int_polynomial<1 + x**2 - 3x**3>} : polynomial.polynomial<#ring>

// A constant polynomial in a ring with i32 coefficients, with a polynomial
// modulus of (x^1024 + 1) and a coefficient modulus of 17.
#modulus = #polynomial.int_polynomial<1 + x**1024>
#ring = #polynomial.ring<coefficientType=i32, coefficientModulus=17:i32, polynomialModulus=#modulus>
%a = polynomial.constant <1 + x**2 - 3x**3> : polynomial.polynomial<#ring>
%a = polynomial.constant {value=#polynomial.int_polynomial<1 + x**2 - 3x**3>} : polynomial.polynomial<#ring>
```
}];

Expand Down
Loading