Skip to content

[mlir][spirv] Add integration test for vector.interleave and vector.shuffle #93595

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
May 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRVPass.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
#include "mlir/Conversion/GPUToSPIRV/GPUToSPIRV.h"
#include "mlir/Conversion/MemRefToSPIRV/MemRefToSPIRV.h"
#include "mlir/Conversion/SCFToSPIRV/SCFToSPIRV.h"
#include "mlir/Conversion/VectorToSPIRV/VectorToSPIRV.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
Expand Down Expand Up @@ -132,6 +133,7 @@ void GPUToSPIRVPass::runOnOperation() {
mlir::arith::populateArithToSPIRVPatterns(typeConverter, patterns);
populateMemRefToSPIRVPatterns(typeConverter, patterns);
populateFuncToSPIRVPatterns(typeConverter, patterns);
populateVectorToSPIRVPatterns(typeConverter, patterns);

if (failed(applyFullConversion(gpuModule, *target, std::move(patterns))))
return signalPassFailure();
Expand Down
53 changes: 53 additions & 0 deletions mlir/test/mlir-vulkan-runner/vector-interleave.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
// RUN: mlir-vulkan-runner %s \
// RUN: --shared-libs=%vulkan-runtime-wrappers,%mlir_runner_utils \
// RUN: --entry-point-result=void | FileCheck %s

// CHECK: [0, 2, 1, 3]
module attributes {
gpu.container_module,
spirv.target_env = #spirv.target_env<
#spirv.vce<v1.0, [Shader], [SPV_KHR_storage_buffer_storage_class]>, #spirv.resource_limits<>>
} {
gpu.module @kernels {
gpu.func @kernel_vector_interleave(%arg0 : memref<2xi32>, %arg1 : memref<2xi32>, %arg2 : memref<4xi32>)
kernel attributes { spirv.entry_point_abi = #spirv.entry_point_abi<workgroup_size = [1, 1, 1]>} {
%c0 = arith.constant 0 : index
%vec0 = vector.load %arg0[%c0] : memref<2xi32>, vector<2xi32>
%vec1 = vector.load %arg1[%c0] : memref<2xi32>, vector<2xi32>
%result = vector.interleave %vec0, %vec1 : vector<2xi32> -> vector<4xi32>
vector.store %result, %arg2[%c0] : memref<4xi32>, vector<4xi32>
gpu.return
}
}

func.func @main() {
// Allocate 3 buffers.
%buf0 = memref.alloc() : memref<2xi32>
%buf1 = memref.alloc() : memref<2xi32>
%buf2 = memref.alloc() : memref<4xi32>

%idx0 = arith.constant 0 : index
%idx1 = arith.constant 1 : index
%idx4 = arith.constant 4 : index

// Initialize input buffer.
%buf0_vals = arith.constant dense<[0, 1]> : vector<2xi32>
%buf1_vals = arith.constant dense<[2, 3]> : vector<2xi32>
vector.store %buf0_vals, %buf0[%idx0] : memref<2xi32>, vector<2xi32>
vector.store %buf1_vals, %buf1[%idx0] : memref<2xi32>, vector<2xi32>

// Initialize output buffer.
%value0 = arith.constant 0 : i32
%buf3 = memref.cast %buf2 : memref<4xi32> to memref<?xi32>
call @fillResource1DInt(%buf3, %value0) : (memref<?xi32>, i32) -> ()

gpu.launch_func @kernels::@kernel_vector_interleave
blocks in (%idx4, %idx1, %idx1) threads in (%idx1, %idx1, %idx1)
args(%buf0 : memref<2xi32>, %buf1 : memref<2xi32>, %buf2 : memref<4xi32>)
%buf4 = memref.cast %buf3 : memref<?xi32> to memref<*xi32>
call @printMemrefI32(%buf4) : (memref<*xi32>) -> ()
return
}
func.func private @fillResource1DInt(%0 : memref<?xi32>, %1 : i32)
func.func private @printMemrefI32(%ptr : memref<*xi32>)
}
53 changes: 53 additions & 0 deletions mlir/test/mlir-vulkan-runner/vector-shuffle.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
// RUN: mlir-vulkan-runner %s \
// RUN: --shared-libs=%vulkan-runtime-wrappers,%mlir_runner_utils \
// RUN: --entry-point-result=void | FileCheck %s

// CHECK: [2, 1, 3]
module attributes {
gpu.container_module,
spirv.target_env = #spirv.target_env<
#spirv.vce<v1.0, [Shader], [SPV_KHR_storage_buffer_storage_class]>, #spirv.resource_limits<>>
} {
gpu.module @kernels {
gpu.func @kernel_vector_shuffle(%arg0 : memref<2xi32>, %arg1 : memref<2xi32>, %arg2 : memref<3xi32>)
kernel attributes { spirv.entry_point_abi = #spirv.entry_point_abi<workgroup_size = [1, 1, 1]>} {
%c0 = arith.constant 0 : index
%vec0 = vector.load %arg0[%c0] : memref<2xi32>, vector<2xi32>
%vec1 = vector.load %arg1[%c0] : memref<2xi32>, vector<2xi32>
%result = vector.shuffle %vec0, %vec1[2, 1, 3] : vector<2xi32>, vector<2xi32>
vector.store %result, %arg2[%c0] : memref<3xi32>, vector<3xi32>
gpu.return
}
}

func.func @main() {
// Allocate 3 buffers.
%buf0 = memref.alloc() : memref<2xi32>
%buf1 = memref.alloc() : memref<2xi32>
%buf2 = memref.alloc() : memref<3xi32>

%idx0 = arith.constant 0 : index
%idx1 = arith.constant 1 : index
%idx4 = arith.constant 4 : index

// Initialize input buffer
%buf0_vals = arith.constant dense<[0, 1]> : vector<2xi32>
%buf1_vals = arith.constant dense<[2, 3]> : vector<2xi32>
vector.store %buf0_vals, %buf0[%idx0] : memref<2xi32>, vector<2xi32>
vector.store %buf1_vals, %buf1[%idx0] : memref<2xi32>, vector<2xi32>

// Initialize output buffer.
%value0 = arith.constant 0 : i32
%buf3 = memref.cast %buf2 : memref<3xi32> to memref<?xi32>
call @fillResource1DInt(%buf3, %value0) : (memref<?xi32>, i32) -> ()

gpu.launch_func @kernels::@kernel_vector_shuffle
blocks in (%idx4, %idx1, %idx1) threads in (%idx1, %idx1, %idx1)
args(%buf0 : memref<2xi32>, %buf1 : memref<2xi32>, %buf2 : memref<3xi32>)
%buf4 = memref.cast %buf3 : memref<?xi32> to memref<*xi32>
call @printMemrefI32(%buf4) : (memref<*xi32>) -> ()
return
}
func.func private @fillResource1DInt(%0 : memref<?xi32>, %1 : i32)
func.func private @printMemrefI32(%ptr : memref<*xi32>)
}
Loading