Skip to content

[InstCombine] lshr (mul (X, 2^N + 1)), N -> X when X is half-width #93677

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 30, 2024

Conversation

AZero13
Copy link
Contributor

@AZero13 AZero13 commented May 29, 2024

@AZero13 AZero13 requested a review from nikic as a code owner May 29, 2024 12:58
@llvmbot
Copy link
Member

llvmbot commented May 29, 2024

@llvm/pr-subscribers-llvm-transforms

Author: AtariDreams (AtariDreams)

Changes

Full diff: https://github.com/llvm/llvm-project/pull/93677.diff

3 Files Affected:

  • (modified) llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp (+66-7)
  • (modified) llvm/test/Transforms/InstCombine/ashr-lshr.ll (+281)
  • (modified) llvm/test/Transforms/InstCombine/lshr.ll (+28-8)
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
index 0f1979fbe0c76..3d2563317e336 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -1461,13 +1461,30 @@ Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
 
     const APInt *MulC;
     if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
-      // Look for a "splat" mul pattern - it replicates bits across each half of
-      // a value, so a right shift is just a mask of the low bits:
-      // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
-      // TODO: Generalize to allow more than just half-width shifts?
-      if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
-          MulC->logBase2() == ShAmtC)
-        return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
+      if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+          MulC->logBase2() == ShAmtC) {
+
+        // Look for a "splat" mul pattern - it replicates bits across each half
+        // of a value, so a right shift is just a mask of the low bits:
+        // lshr i[2N] (mul nuw X, (2^N)+1), N --> X
+        if (ShAmtC * 2 == BitWidth)
+          return replaceInstUsesWith(I, X);
+
+        KnownBits KnownX =
+            computeKnownBits(X, /* Depth */ 0, cast<Instruction>(Op0));
+        if (KnownX.countMaxActiveBits() <= ShAmtC)
+          return replaceInstUsesWith(I, X);
+
+        // lshr (mul nuw (X, 2^N + 1)), N -> add nuw (X, lshr(X, N))
+        if (Op0->hasOneUse()) {
+          auto *NewAdd = BinaryOperator::CreateNUWAdd(
+              X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
+                                    I.isExact()));
+          NewAdd->setHasNoSignedWrap(
+              cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
+          return NewAdd;
+        }
+      }
 
       // The one-use check is not strictly necessary, but codegen may not be
       // able to invert the transform and perf may suffer with an extra mul
@@ -1487,6 +1504,26 @@ Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
       }
     }
 
+    // lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N))
+    if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) {
+      if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+          MulC->logBase2() == ShAmtC) {
+        return BinaryOperator::CreateNSWAdd(
+            X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
+                                  I.isExact()));
+      }
+    }
+
+    // lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N))
+    if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) {
+      if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+          MulC->logBase2() == ShAmtC) {
+        return BinaryOperator::CreateNSWAdd(
+            X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
+                                  I.isExact()));
+      }
+    }
+
     // Try to narrow bswap.
     // In the case where the shift amount equals the bitwidth difference, the
     // shift is eliminated.
@@ -1690,6 +1727,28 @@ Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
       if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
         return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
     }
+
+    const APInt *MulC;
+    if (match(Op0, m_NSWMul(m_Value(X), m_APInt(MulC))) &&
+        (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+         MulC->logBase2() == ShAmt &&
+         (ShAmt < BitWidth - 1))) /* Minus 1 for the sign bit */ {
+
+      // ashr (mul nsw (X, 2^N + 1)), N -> add nsw (X, ashr(X, N))
+      KnownBits KnownX =
+          computeKnownBits(X, /* Depth */ 0, cast<Instruction>(Op0));
+      if (KnownX.countMaxActiveBits() <= ShAmt)
+        return replaceInstUsesWith(I, X);
+
+      if (Op0->hasOneUse()) {
+        auto *NewAdd = BinaryOperator::CreateNSWAdd(
+            X, Builder.CreateAShr(X, ConstantInt::get(Ty, ShAmt), "",
+                                  I.isExact()));
+        NewAdd->setHasNoUnsignedWrap(
+            cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap());
+        return NewAdd;
+      }
+    }
   }
 
   const SimplifyQuery Q = SQ.getWithInstruction(&I);
diff --git a/llvm/test/Transforms/InstCombine/ashr-lshr.ll b/llvm/test/Transforms/InstCombine/ashr-lshr.ll
index ac206dc7999dd..f426755dfc9dd 100644
--- a/llvm/test/Transforms/InstCombine/ashr-lshr.ll
+++ b/llvm/test/Transforms/InstCombine/ashr-lshr.ll
@@ -604,3 +604,284 @@ define <2 x i8> @ashr_known_pos_exact_vec(<2 x i8> %x, <2 x i8> %y) {
   %r = ashr exact <2 x i8> %p, %y
   ret <2 x i8> %r
 }
+
+define i32 @lshr_mul_times_3_div_2(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2(
+; CHECK-NEXT:    [[TMP2:%.*]] = lshr i32 [[TMP0:%.*]], 1
+; CHECK-NEXT:    [[LSHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nsw nuw i32 %0, 3
+  %lshr = lshr i32 %mul, 1
+  ret i32 %lshr
+}
+
+define i32 @lshr_mul_times_3_div_2_exact(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2_exact(
+; CHECK-NEXT:    [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 1
+; CHECK-NEXT:    [[LSHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nsw i32 %x, 3
+  %lshr = lshr exact i32 %mul, 1
+  ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @lshr_mul_times_3_div_2_no_flags(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2_no_flags(
+; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 3
+; CHECK-NEXT:    [[LSHR:%.*]] = lshr i32 [[MUL]], 1
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul i32 %0, 3
+  %lshr = lshr i32 %mul, 1
+  ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @mul_times_3_div_2_multiuse_lshr(i32 %x) {
+; CHECK-LABEL: @mul_times_3_div_2_multiuse_lshr(
+; CHECK-NEXT:    [[MUL:%.*]] = mul nuw i32 [[X:%.*]], 3
+; CHECK-NEXT:    [[RES:%.*]] = lshr i32 [[MUL]], 1
+; CHECK-NEXT:    call void @use(i32 [[MUL]])
+; CHECK-NEXT:    ret i32 [[RES]]
+;
+  %mul = mul nuw i32 %x, 3
+  %res = lshr i32 %mul, 1
+  call void @use(i32 %mul)
+  ret i32 %res
+}
+
+define i32 @lshr_mul_times_3_div_2_exact_2(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2_exact_2(
+; CHECK-NEXT:    [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 1
+; CHECK-NEXT:    [[LSHR:%.*]] = add nuw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nuw i32 %x, 3
+  %lshr = lshr exact i32 %mul, 1
+  ret i32 %lshr
+}
+
+define i32 @lshr_mul_times_5_div_4(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4(
+; CHECK-NEXT:    [[TMP2:%.*]] = lshr i32 [[TMP0:%.*]], 2
+; CHECK-NEXT:    [[LSHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nsw nuw i32 %0, 5
+  %lshr = lshr i32 %mul, 2
+  ret i32 %lshr
+}
+
+define i32 @lshr_mul_times_5_div_4_exact(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4_exact(
+; CHECK-NEXT:    [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 2
+; CHECK-NEXT:    [[LSHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nsw i32 %x, 5
+  %lshr = lshr exact i32 %mul, 2
+  ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @lshr_mul_times_5_div_4_no_flags(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4_no_flags(
+; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 5
+; CHECK-NEXT:    [[LSHR:%.*]] = lshr i32 [[MUL]], 2
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul i32 %0, 5
+  %lshr = lshr i32 %mul, 2
+  ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @mul_times_5_div_4_multiuse_lshr(i32 %x) {
+; CHECK-LABEL: @mul_times_5_div_4_multiuse_lshr(
+; CHECK-NEXT:    [[MUL:%.*]] = mul nuw i32 [[X:%.*]], 5
+; CHECK-NEXT:    [[RES:%.*]] = lshr i32 [[MUL]], 2
+; CHECK-NEXT:    call void @use(i32 [[MUL]])
+; CHECK-NEXT:    ret i32 [[RES]]
+;
+  %mul = mul nuw i32 %x, 5
+  %res = lshr i32 %mul, 2
+  call void @use(i32 %mul)
+  ret i32 %res
+}
+
+define i32 @lshr_mul_times_5_div_4_exact_2(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4_exact_2(
+; CHECK-NEXT:    [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 2
+; CHECK-NEXT:    [[LSHR:%.*]] = add nuw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[LSHR]]
+;
+  %mul = mul nuw i32 %x, 5
+  %lshr = lshr exact i32 %mul, 2
+  ret i32 %lshr
+}
+
+define i32 @ashr_mul_times_3_div_2(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2(
+; CHECK-NEXT:    [[TMP2:%.*]] = ashr i32 [[TMP0:%.*]], 1
+; CHECK-NEXT:    [[ASHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nuw nsw i32 %0, 3
+  %ashr = ashr i32 %mul, 1
+  ret i32 %ashr
+}
+
+define i32 @ashr_mul_times_3_div_2_exact(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_exact(
+; CHECK-NEXT:    [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 1
+; CHECK-NEXT:    [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nsw i32 %x, 3
+  %ashr = ashr exact i32 %mul, 1
+  ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @ashr_mul_times_3_div_2_no_flags(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_no_flags(
+; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 3
+; CHECK-NEXT:    [[ASHR:%.*]] = ashr i32 [[MUL]], 1
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul i32 %0, 3
+  %ashr = ashr i32 %mul, 1
+  ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @ashr_mul_times_3_div_2_no_nsw(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_no_nsw(
+; CHECK-NEXT:    [[MUL:%.*]] = mul nuw i32 [[TMP0:%.*]], 3
+; CHECK-NEXT:    [[ASHR:%.*]] = ashr i32 [[MUL]], 1
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nuw i32 %0, 3
+  %ashr = ashr i32 %mul, 1
+  ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @mul_times_3_div_2_multiuse_ashr(i32 %x) {
+; CHECK-LABEL: @mul_times_3_div_2_multiuse_ashr(
+; CHECK-NEXT:    [[MUL:%.*]] = mul nsw i32 [[X:%.*]], 3
+; CHECK-NEXT:    [[RES:%.*]] = ashr i32 [[MUL]], 1
+; CHECK-NEXT:    call void @use(i32 [[MUL]])
+; CHECK-NEXT:    ret i32 [[RES]]
+;
+  %mul = mul nsw i32 %x, 3
+  %res = ashr i32 %mul, 1
+  call void @use(i32 %mul)
+  ret i32 %res
+}
+
+define i32 @ashr_mul_times_3_div_2_exact_2(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_exact_2(
+; CHECK-NEXT:    [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 1
+; CHECK-NEXT:    [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nsw i32 %x, 3
+  %ashr = ashr exact i32 %mul, 1
+  ret i32 %ashr
+}
+
+define i32 @ashr_mul_times_5_div_4(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4(
+; CHECK-NEXT:    [[TMP2:%.*]] = ashr i32 [[TMP0:%.*]], 2
+; CHECK-NEXT:    [[ASHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nuw nsw i32 %0, 5
+  %ashr = ashr i32 %mul, 2
+  ret i32 %ashr
+}
+
+define i32 @ashr_mul_times_5_div_4_exact(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4_exact(
+; CHECK-NEXT:    [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 2
+; CHECK-NEXT:    [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nsw i32 %x, 5
+  %ashr = ashr exact i32 %mul, 2
+  ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @ashr_mul_times_5_div_4_no_flags(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4_no_flags(
+; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 5
+; CHECK-NEXT:    [[ASHR:%.*]] = ashr i32 [[MUL]], 2
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul i32 %0, 5
+  %ashr = ashr i32 %mul, 2
+  ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @mul_times_5_div_4_multiuse_ashr(i32 %x) {
+; CHECK-LABEL: @mul_times_5_div_4_multiuse_ashr(
+; CHECK-NEXT:    [[MUL:%.*]] = mul nsw i32 [[X:%.*]], 5
+; CHECK-NEXT:    [[RES:%.*]] = ashr i32 [[MUL]], 2
+; CHECK-NEXT:    call void @use(i32 [[MUL]])
+; CHECK-NEXT:    ret i32 [[RES]]
+;
+  %mul = mul nsw i32 %x, 5
+  %res = ashr i32 %mul, 2
+  call void @use(i32 %mul)
+  ret i32 %res
+}
+
+define i32 @ashr_mul_times_5_div_4_exact_2(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4_exact_2(
+; CHECK-NEXT:    [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 2
+; CHECK-NEXT:    [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[ASHR]]
+;
+  %mul = mul nsw i32 %x, 5
+  %ashr = ashr exact i32 %mul, 2
+  ret i32 %ashr
+}
+
+define i32 @mul_splat_fold_known_active_bits(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_known_active_bits(
+; CHECK-NEXT:    [[XX:%.*]] = and i32 [[X:%.*]], 360
+; CHECK-NEXT:    ret i32 [[XX]]
+;
+  %xx = and i32 %x, 360
+  %m = mul nuw i32 %xx, 65537
+  %t = ashr i32 %m, 16
+  ret i32 %t
+}
+
+define i32 @mul_splat_fold_no_known_active_bits(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_no_known_active_bits(
+; CHECK-NEXT:    [[TMP1:%.*]] = ashr i32 [[X:%.*]], 16
+; CHECK-NEXT:    [[T:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT:    ret i32 [[T]]
+;
+  %m = mul nsw i32 %x, 65537
+  %t = ashr i32 %m, 16
+  ret i32 %t
+}
+
+declare void @use(i32)
diff --git a/llvm/test/Transforms/InstCombine/lshr.ll b/llvm/test/Transforms/InstCombine/lshr.ll
index fa92c1c4b3be4..17b08985ee90e 100644
--- a/llvm/test/Transforms/InstCombine/lshr.ll
+++ b/llvm/test/Transforms/InstCombine/lshr.ll
@@ -348,22 +348,31 @@ define <2 x i32> @narrow_lshr_constant(<2 x i8> %x, <2 x i8> %y) {
 
 define i32 @mul_splat_fold(i32 %x) {
 ; CHECK-LABEL: @mul_splat_fold(
-; CHECK-NEXT:    [[T:%.*]] = and i32 [[X:%.*]], 65535
-; CHECK-NEXT:    ret i32 [[T]]
+; CHECK-NEXT:    ret i32 [[X:%.*]]
 ;
   %m = mul nuw i32 %x, 65537
   %t = lshr i32 %m, 16
   ret i32 %t
 }
 
+define i32 @mul_splat_fold_known_zeros(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_known_zeros(
+; CHECK-NEXT:    [[XX:%.*]] = and i32 [[X:%.*]], 360
+; CHECK-NEXT:    ret i32 [[XX]]
+;
+  %xx = and i32 %x, 360
+  %m = mul nuw i32 %xx, 65537
+  %t = lshr i32 %m, 16
+  ret i32 %t
+}
+
 ; Vector type, extra use, weird types are all ok.
 
 define <3 x i14> @mul_splat_fold_vec(<3 x i14> %x) {
 ; CHECK-LABEL: @mul_splat_fold_vec(
 ; CHECK-NEXT:    [[M:%.*]] = mul nuw <3 x i14> [[X:%.*]], <i14 129, i14 129, i14 129>
 ; CHECK-NEXT:    call void @usevec(<3 x i14> [[M]])
-; CHECK-NEXT:    [[T:%.*]] = and <3 x i14> [[X]], <i14 127, i14 127, i14 127>
-; CHECK-NEXT:    ret <3 x i14> [[T]]
+; CHECK-NEXT:    ret <3 x i14> [[X]]
 ;
   %m = mul nuw <3 x i14> %x, <i14 129, i14 129, i14 129>
   call void @usevec(<3 x i14> %m)
@@ -628,12 +637,10 @@ define i32 @mul_splat_fold_wrong_lshr_const(i32 %x) {
   ret i32 %t
 }
 
-; Negative test
-
 define i32 @mul_splat_fold_no_nuw(i32 %x) {
 ; CHECK-LABEL: @mul_splat_fold_no_nuw(
-; CHECK-NEXT:    [[M:%.*]] = mul nsw i32 [[X:%.*]], 65537
-; CHECK-NEXT:    [[T:%.*]] = lshr i32 [[M]], 16
+; CHECK-NEXT:    [[TMP1:%.*]] = lshr i32 [[X:%.*]], 16
+; CHECK-NEXT:    [[T:%.*]] = add nsw i32 [[TMP1]], [[X]]
 ; CHECK-NEXT:    ret i32 [[T]]
 ;
   %m = mul nsw i32 %x, 65537
@@ -641,6 +648,19 @@ define i32 @mul_splat_fold_no_nuw(i32 %x) {
   ret i32 %t
 }
 
+; Negative test
+
+define i32 @mul_splat_fold_no_flags(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_no_flags(
+; CHECK-NEXT:    [[M:%.*]] = mul i32 [[X:%.*]], 65537
+; CHECK-NEXT:    [[T:%.*]] = lshr i32 [[M]], 16
+; CHECK-NEXT:    ret i32 [[T]]
+;
+  %m = mul i32 %x, 65537
+  %t = lshr i32 %m, 16
+  ret i32 %t
+}
+
 ; Negative test (but simplifies before we reach the mul_splat transform)- need more than 2 bits
 
 define i2 @mul_splat_fold_too_narrow(i2 %x) {

@AZero13 AZero13 marked this pull request as draft May 29, 2024 13:01
@AZero13 AZero13 marked this pull request as draft May 29, 2024 13:01
@nikic
Copy link
Contributor

nikic commented May 29, 2024

If you want to create a draft pull request, please create it as a draft. Do not first open it as a normal pull request and then convert it into a draft. Otherwise you will still notify and subscribe everyone.

@AZero13
Copy link
Contributor Author

AZero13 commented May 29, 2024

I have used this platform for years and today I learned you could do that instead of converting to draft. I'm so sorry I feel so dumb.

Copy link

github-actions bot commented May 29, 2024

✅ With the latest revision this PR passed the C/C++ code formatter.

@AZero13 AZero13 changed the title [InstCombine] Simplify further when shift is half bitwidth [InstCombine] lshr (mul (X, 2^N + 1)), N -> X when X is half-width May 29, 2024
@AZero13 AZero13 requested a review from nikic May 29, 2024 22:28
@AZero13 AZero13 marked this pull request as ready for review May 29, 2024 22:28
Copy link
Contributor

@nikic nikic left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@nikic nikic merged commit 1034b4d into llvm:main May 30, 2024
4 of 7 checks passed
@AZero13 AZero13 deleted the d branch May 30, 2024 11:29
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants