-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[InstCombine] lshr (mul (X, 2^N + 1)), N -> X when X is half-width #93677
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
@llvm/pr-subscribers-llvm-transforms Author: AtariDreams (AtariDreams) ChangesFull diff: https://github.com/llvm/llvm-project/pull/93677.diff 3 Files Affected:
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
index 0f1979fbe0c76..3d2563317e336 100644
--- a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -1461,13 +1461,30 @@ Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
const APInt *MulC;
if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
- // Look for a "splat" mul pattern - it replicates bits across each half of
- // a value, so a right shift is just a mask of the low bits:
- // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
- // TODO: Generalize to allow more than just half-width shifts?
- if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
- MulC->logBase2() == ShAmtC)
- return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
+ if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+ MulC->logBase2() == ShAmtC) {
+
+ // Look for a "splat" mul pattern - it replicates bits across each half
+ // of a value, so a right shift is just a mask of the low bits:
+ // lshr i[2N] (mul nuw X, (2^N)+1), N --> X
+ if (ShAmtC * 2 == BitWidth)
+ return replaceInstUsesWith(I, X);
+
+ KnownBits KnownX =
+ computeKnownBits(X, /* Depth */ 0, cast<Instruction>(Op0));
+ if (KnownX.countMaxActiveBits() <= ShAmtC)
+ return replaceInstUsesWith(I, X);
+
+ // lshr (mul nuw (X, 2^N + 1)), N -> add nuw (X, lshr(X, N))
+ if (Op0->hasOneUse()) {
+ auto *NewAdd = BinaryOperator::CreateNUWAdd(
+ X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
+ I.isExact()));
+ NewAdd->setHasNoSignedWrap(
+ cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
+ return NewAdd;
+ }
+ }
// The one-use check is not strictly necessary, but codegen may not be
// able to invert the transform and perf may suffer with an extra mul
@@ -1487,6 +1504,26 @@ Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
}
}
+ // lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N))
+ if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) {
+ if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+ MulC->logBase2() == ShAmtC) {
+ return BinaryOperator::CreateNSWAdd(
+ X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
+ I.isExact()));
+ }
+ }
+
+ // lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N))
+ if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) {
+ if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+ MulC->logBase2() == ShAmtC) {
+ return BinaryOperator::CreateNSWAdd(
+ X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
+ I.isExact()));
+ }
+ }
+
// Try to narrow bswap.
// In the case where the shift amount equals the bitwidth difference, the
// shift is eliminated.
@@ -1690,6 +1727,28 @@ Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
}
+
+ const APInt *MulC;
+ if (match(Op0, m_NSWMul(m_Value(X), m_APInt(MulC))) &&
+ (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
+ MulC->logBase2() == ShAmt &&
+ (ShAmt < BitWidth - 1))) /* Minus 1 for the sign bit */ {
+
+ // ashr (mul nsw (X, 2^N + 1)), N -> add nsw (X, ashr(X, N))
+ KnownBits KnownX =
+ computeKnownBits(X, /* Depth */ 0, cast<Instruction>(Op0));
+ if (KnownX.countMaxActiveBits() <= ShAmt)
+ return replaceInstUsesWith(I, X);
+
+ if (Op0->hasOneUse()) {
+ auto *NewAdd = BinaryOperator::CreateNSWAdd(
+ X, Builder.CreateAShr(X, ConstantInt::get(Ty, ShAmt), "",
+ I.isExact()));
+ NewAdd->setHasNoUnsignedWrap(
+ cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap());
+ return NewAdd;
+ }
+ }
}
const SimplifyQuery Q = SQ.getWithInstruction(&I);
diff --git a/llvm/test/Transforms/InstCombine/ashr-lshr.ll b/llvm/test/Transforms/InstCombine/ashr-lshr.ll
index ac206dc7999dd..f426755dfc9dd 100644
--- a/llvm/test/Transforms/InstCombine/ashr-lshr.ll
+++ b/llvm/test/Transforms/InstCombine/ashr-lshr.ll
@@ -604,3 +604,284 @@ define <2 x i8> @ashr_known_pos_exact_vec(<2 x i8> %x, <2 x i8> %y) {
%r = ashr exact <2 x i8> %p, %y
ret <2 x i8> %r
}
+
+define i32 @lshr_mul_times_3_div_2(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2(
+; CHECK-NEXT: [[TMP2:%.*]] = lshr i32 [[TMP0:%.*]], 1
+; CHECK-NEXT: [[LSHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT: ret i32 [[LSHR]]
+;
+ %mul = mul nsw nuw i32 %0, 3
+ %lshr = lshr i32 %mul, 1
+ ret i32 %lshr
+}
+
+define i32 @lshr_mul_times_3_div_2_exact(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2_exact(
+; CHECK-NEXT: [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 1
+; CHECK-NEXT: [[LSHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT: ret i32 [[LSHR]]
+;
+ %mul = mul nsw i32 %x, 3
+ %lshr = lshr exact i32 %mul, 1
+ ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @lshr_mul_times_3_div_2_no_flags(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2_no_flags(
+; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 3
+; CHECK-NEXT: [[LSHR:%.*]] = lshr i32 [[MUL]], 1
+; CHECK-NEXT: ret i32 [[LSHR]]
+;
+ %mul = mul i32 %0, 3
+ %lshr = lshr i32 %mul, 1
+ ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @mul_times_3_div_2_multiuse_lshr(i32 %x) {
+; CHECK-LABEL: @mul_times_3_div_2_multiuse_lshr(
+; CHECK-NEXT: [[MUL:%.*]] = mul nuw i32 [[X:%.*]], 3
+; CHECK-NEXT: [[RES:%.*]] = lshr i32 [[MUL]], 1
+; CHECK-NEXT: call void @use(i32 [[MUL]])
+; CHECK-NEXT: ret i32 [[RES]]
+;
+ %mul = mul nuw i32 %x, 3
+ %res = lshr i32 %mul, 1
+ call void @use(i32 %mul)
+ ret i32 %res
+}
+
+define i32 @lshr_mul_times_3_div_2_exact_2(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_3_div_2_exact_2(
+; CHECK-NEXT: [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 1
+; CHECK-NEXT: [[LSHR:%.*]] = add nuw i32 [[TMP1]], [[X]]
+; CHECK-NEXT: ret i32 [[LSHR]]
+;
+ %mul = mul nuw i32 %x, 3
+ %lshr = lshr exact i32 %mul, 1
+ ret i32 %lshr
+}
+
+define i32 @lshr_mul_times_5_div_4(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4(
+; CHECK-NEXT: [[TMP2:%.*]] = lshr i32 [[TMP0:%.*]], 2
+; CHECK-NEXT: [[LSHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT: ret i32 [[LSHR]]
+;
+ %mul = mul nsw nuw i32 %0, 5
+ %lshr = lshr i32 %mul, 2
+ ret i32 %lshr
+}
+
+define i32 @lshr_mul_times_5_div_4_exact(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4_exact(
+; CHECK-NEXT: [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 2
+; CHECK-NEXT: [[LSHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT: ret i32 [[LSHR]]
+;
+ %mul = mul nsw i32 %x, 5
+ %lshr = lshr exact i32 %mul, 2
+ ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @lshr_mul_times_5_div_4_no_flags(i32 %0) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4_no_flags(
+; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 5
+; CHECK-NEXT: [[LSHR:%.*]] = lshr i32 [[MUL]], 2
+; CHECK-NEXT: ret i32 [[LSHR]]
+;
+ %mul = mul i32 %0, 5
+ %lshr = lshr i32 %mul, 2
+ ret i32 %lshr
+}
+
+; Negative test
+
+define i32 @mul_times_5_div_4_multiuse_lshr(i32 %x) {
+; CHECK-LABEL: @mul_times_5_div_4_multiuse_lshr(
+; CHECK-NEXT: [[MUL:%.*]] = mul nuw i32 [[X:%.*]], 5
+; CHECK-NEXT: [[RES:%.*]] = lshr i32 [[MUL]], 2
+; CHECK-NEXT: call void @use(i32 [[MUL]])
+; CHECK-NEXT: ret i32 [[RES]]
+;
+ %mul = mul nuw i32 %x, 5
+ %res = lshr i32 %mul, 2
+ call void @use(i32 %mul)
+ ret i32 %res
+}
+
+define i32 @lshr_mul_times_5_div_4_exact_2(i32 %x) {
+; CHECK-LABEL: @lshr_mul_times_5_div_4_exact_2(
+; CHECK-NEXT: [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 2
+; CHECK-NEXT: [[LSHR:%.*]] = add nuw i32 [[TMP1]], [[X]]
+; CHECK-NEXT: ret i32 [[LSHR]]
+;
+ %mul = mul nuw i32 %x, 5
+ %lshr = lshr exact i32 %mul, 2
+ ret i32 %lshr
+}
+
+define i32 @ashr_mul_times_3_div_2(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2(
+; CHECK-NEXT: [[TMP2:%.*]] = ashr i32 [[TMP0:%.*]], 1
+; CHECK-NEXT: [[ASHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT: ret i32 [[ASHR]]
+;
+ %mul = mul nuw nsw i32 %0, 3
+ %ashr = ashr i32 %mul, 1
+ ret i32 %ashr
+}
+
+define i32 @ashr_mul_times_3_div_2_exact(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_exact(
+; CHECK-NEXT: [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 1
+; CHECK-NEXT: [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT: ret i32 [[ASHR]]
+;
+ %mul = mul nsw i32 %x, 3
+ %ashr = ashr exact i32 %mul, 1
+ ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @ashr_mul_times_3_div_2_no_flags(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_no_flags(
+; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 3
+; CHECK-NEXT: [[ASHR:%.*]] = ashr i32 [[MUL]], 1
+; CHECK-NEXT: ret i32 [[ASHR]]
+;
+ %mul = mul i32 %0, 3
+ %ashr = ashr i32 %mul, 1
+ ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @ashr_mul_times_3_div_2_no_nsw(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_no_nsw(
+; CHECK-NEXT: [[MUL:%.*]] = mul nuw i32 [[TMP0:%.*]], 3
+; CHECK-NEXT: [[ASHR:%.*]] = ashr i32 [[MUL]], 1
+; CHECK-NEXT: ret i32 [[ASHR]]
+;
+ %mul = mul nuw i32 %0, 3
+ %ashr = ashr i32 %mul, 1
+ ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @mul_times_3_div_2_multiuse_ashr(i32 %x) {
+; CHECK-LABEL: @mul_times_3_div_2_multiuse_ashr(
+; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[X:%.*]], 3
+; CHECK-NEXT: [[RES:%.*]] = ashr i32 [[MUL]], 1
+; CHECK-NEXT: call void @use(i32 [[MUL]])
+; CHECK-NEXT: ret i32 [[RES]]
+;
+ %mul = mul nsw i32 %x, 3
+ %res = ashr i32 %mul, 1
+ call void @use(i32 %mul)
+ ret i32 %res
+}
+
+define i32 @ashr_mul_times_3_div_2_exact_2(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_3_div_2_exact_2(
+; CHECK-NEXT: [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 1
+; CHECK-NEXT: [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT: ret i32 [[ASHR]]
+;
+ %mul = mul nsw i32 %x, 3
+ %ashr = ashr exact i32 %mul, 1
+ ret i32 %ashr
+}
+
+define i32 @ashr_mul_times_5_div_4(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4(
+; CHECK-NEXT: [[TMP2:%.*]] = ashr i32 [[TMP0:%.*]], 2
+; CHECK-NEXT: [[ASHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
+; CHECK-NEXT: ret i32 [[ASHR]]
+;
+ %mul = mul nuw nsw i32 %0, 5
+ %ashr = ashr i32 %mul, 2
+ ret i32 %ashr
+}
+
+define i32 @ashr_mul_times_5_div_4_exact(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4_exact(
+; CHECK-NEXT: [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 2
+; CHECK-NEXT: [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT: ret i32 [[ASHR]]
+;
+ %mul = mul nsw i32 %x, 5
+ %ashr = ashr exact i32 %mul, 2
+ ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @ashr_mul_times_5_div_4_no_flags(i32 %0) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4_no_flags(
+; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 5
+; CHECK-NEXT: [[ASHR:%.*]] = ashr i32 [[MUL]], 2
+; CHECK-NEXT: ret i32 [[ASHR]]
+;
+ %mul = mul i32 %0, 5
+ %ashr = ashr i32 %mul, 2
+ ret i32 %ashr
+}
+
+; Negative test
+
+define i32 @mul_times_5_div_4_multiuse_ashr(i32 %x) {
+; CHECK-LABEL: @mul_times_5_div_4_multiuse_ashr(
+; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[X:%.*]], 5
+; CHECK-NEXT: [[RES:%.*]] = ashr i32 [[MUL]], 2
+; CHECK-NEXT: call void @use(i32 [[MUL]])
+; CHECK-NEXT: ret i32 [[RES]]
+;
+ %mul = mul nsw i32 %x, 5
+ %res = ashr i32 %mul, 2
+ call void @use(i32 %mul)
+ ret i32 %res
+}
+
+define i32 @ashr_mul_times_5_div_4_exact_2(i32 %x) {
+; CHECK-LABEL: @ashr_mul_times_5_div_4_exact_2(
+; CHECK-NEXT: [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 2
+; CHECK-NEXT: [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT: ret i32 [[ASHR]]
+;
+ %mul = mul nsw i32 %x, 5
+ %ashr = ashr exact i32 %mul, 2
+ ret i32 %ashr
+}
+
+define i32 @mul_splat_fold_known_active_bits(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_known_active_bits(
+; CHECK-NEXT: [[XX:%.*]] = and i32 [[X:%.*]], 360
+; CHECK-NEXT: ret i32 [[XX]]
+;
+ %xx = and i32 %x, 360
+ %m = mul nuw i32 %xx, 65537
+ %t = ashr i32 %m, 16
+ ret i32 %t
+}
+
+define i32 @mul_splat_fold_no_known_active_bits(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_no_known_active_bits(
+; CHECK-NEXT: [[TMP1:%.*]] = ashr i32 [[X:%.*]], 16
+; CHECK-NEXT: [[T:%.*]] = add nsw i32 [[TMP1]], [[X]]
+; CHECK-NEXT: ret i32 [[T]]
+;
+ %m = mul nsw i32 %x, 65537
+ %t = ashr i32 %m, 16
+ ret i32 %t
+}
+
+declare void @use(i32)
diff --git a/llvm/test/Transforms/InstCombine/lshr.ll b/llvm/test/Transforms/InstCombine/lshr.ll
index fa92c1c4b3be4..17b08985ee90e 100644
--- a/llvm/test/Transforms/InstCombine/lshr.ll
+++ b/llvm/test/Transforms/InstCombine/lshr.ll
@@ -348,22 +348,31 @@ define <2 x i32> @narrow_lshr_constant(<2 x i8> %x, <2 x i8> %y) {
define i32 @mul_splat_fold(i32 %x) {
; CHECK-LABEL: @mul_splat_fold(
-; CHECK-NEXT: [[T:%.*]] = and i32 [[X:%.*]], 65535
-; CHECK-NEXT: ret i32 [[T]]
+; CHECK-NEXT: ret i32 [[X:%.*]]
;
%m = mul nuw i32 %x, 65537
%t = lshr i32 %m, 16
ret i32 %t
}
+define i32 @mul_splat_fold_known_zeros(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_known_zeros(
+; CHECK-NEXT: [[XX:%.*]] = and i32 [[X:%.*]], 360
+; CHECK-NEXT: ret i32 [[XX]]
+;
+ %xx = and i32 %x, 360
+ %m = mul nuw i32 %xx, 65537
+ %t = lshr i32 %m, 16
+ ret i32 %t
+}
+
; Vector type, extra use, weird types are all ok.
define <3 x i14> @mul_splat_fold_vec(<3 x i14> %x) {
; CHECK-LABEL: @mul_splat_fold_vec(
; CHECK-NEXT: [[M:%.*]] = mul nuw <3 x i14> [[X:%.*]], <i14 129, i14 129, i14 129>
; CHECK-NEXT: call void @usevec(<3 x i14> [[M]])
-; CHECK-NEXT: [[T:%.*]] = and <3 x i14> [[X]], <i14 127, i14 127, i14 127>
-; CHECK-NEXT: ret <3 x i14> [[T]]
+; CHECK-NEXT: ret <3 x i14> [[X]]
;
%m = mul nuw <3 x i14> %x, <i14 129, i14 129, i14 129>
call void @usevec(<3 x i14> %m)
@@ -628,12 +637,10 @@ define i32 @mul_splat_fold_wrong_lshr_const(i32 %x) {
ret i32 %t
}
-; Negative test
-
define i32 @mul_splat_fold_no_nuw(i32 %x) {
; CHECK-LABEL: @mul_splat_fold_no_nuw(
-; CHECK-NEXT: [[M:%.*]] = mul nsw i32 [[X:%.*]], 65537
-; CHECK-NEXT: [[T:%.*]] = lshr i32 [[M]], 16
+; CHECK-NEXT: [[TMP1:%.*]] = lshr i32 [[X:%.*]], 16
+; CHECK-NEXT: [[T:%.*]] = add nsw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[T]]
;
%m = mul nsw i32 %x, 65537
@@ -641,6 +648,19 @@ define i32 @mul_splat_fold_no_nuw(i32 %x) {
ret i32 %t
}
+; Negative test
+
+define i32 @mul_splat_fold_no_flags(i32 %x) {
+; CHECK-LABEL: @mul_splat_fold_no_flags(
+; CHECK-NEXT: [[M:%.*]] = mul i32 [[X:%.*]], 65537
+; CHECK-NEXT: [[T:%.*]] = lshr i32 [[M]], 16
+; CHECK-NEXT: ret i32 [[T]]
+;
+ %m = mul i32 %x, 65537
+ %t = lshr i32 %m, 16
+ ret i32 %t
+}
+
; Negative test (but simplifies before we reach the mul_splat transform)- need more than 2 bits
define i2 @mul_splat_fold_too_narrow(i2 %x) {
|
If you want to create a draft pull request, please create it as a draft. Do not first open it as a normal pull request and then convert it into a draft. Otherwise you will still notify and subscribe everyone. |
I have used this platform for years and today I learned you could do that instead of converting to draft. I'm so sorry I feel so dumb. |
✅ With the latest revision this PR passed the C/C++ code formatter. |
f9bdb00
to
3846e27
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
Alive2 Proof:
https://alive2.llvm.org/ce/z/Yd2CKF