-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[clang][Interp] Implement complex division #94892
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@llvm/pr-subscribers-clang Author: Timm Baeder (tbaederr) ChangesDepends on the multiplication PR. Patch is 23.94 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/94892.diff 6 Files Affected:
diff --git a/clang/lib/AST/ExprConstShared.h b/clang/lib/AST/ExprConstShared.h
index a97eac85abc69..2a7088e4e371a 100644
--- a/clang/lib/AST/ExprConstShared.h
+++ b/clang/lib/AST/ExprConstShared.h
@@ -14,6 +14,9 @@
#ifndef LLVM_CLANG_LIB_AST_EXPRCONSTSHARED_H
#define LLVM_CLANG_LIB_AST_EXPRCONSTSHARED_H
+namespace llvm {
+class APFloat;
+}
namespace clang {
class QualType;
class LangOptions;
@@ -56,4 +59,11 @@ enum class GCCTypeClass {
GCCTypeClass EvaluateBuiltinClassifyType(QualType T,
const LangOptions &LangOpts);
+void HandleComplexComplexMul(llvm::APFloat A, llvm::APFloat B, llvm::APFloat C,
+ llvm::APFloat D, llvm::APFloat &ResR,
+ llvm::APFloat &ResI);
+void HandleComplexComplexDiv(llvm::APFloat A, llvm::APFloat B, llvm::APFloat C,
+ llvm::APFloat D, llvm::APFloat &ResR,
+ llvm::APFloat &ResI);
+
#endif
diff --git a/clang/lib/AST/ExprConstant.cpp b/clang/lib/AST/ExprConstant.cpp
index 86fb396fabe2d..c4c8319b9f9f3 100644
--- a/clang/lib/AST/ExprConstant.cpp
+++ b/clang/lib/AST/ExprConstant.cpp
@@ -15126,6 +15126,104 @@ bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
llvm_unreachable("unknown cast resulting in complex value");
}
+void HandleComplexComplexMul(APFloat A, APFloat B, APFloat C, APFloat D,
+ APFloat &ResR, APFloat &ResI) {
+ // This is an implementation of complex multiplication according to the
+ // constraints laid out in C11 Annex G. The implementation uses the
+ // following naming scheme:
+ // (a + ib) * (c + id)
+
+ APFloat AC = A * C;
+ APFloat BD = B * D;
+ APFloat AD = A * D;
+ APFloat BC = B * C;
+ ResR = AC - BD;
+ ResI = AD + BC;
+ if (ResR.isNaN() && ResI.isNaN()) {
+ bool Recalc = false;
+ if (A.isInfinity() || B.isInfinity()) {
+ A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0),
+ A);
+ B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0),
+ B);
+ if (C.isNaN())
+ C = APFloat::copySign(APFloat(C.getSemantics()), C);
+ if (D.isNaN())
+ D = APFloat::copySign(APFloat(D.getSemantics()), D);
+ Recalc = true;
+ }
+ if (C.isInfinity() || D.isInfinity()) {
+ C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0),
+ C);
+ D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0),
+ D);
+ if (A.isNaN())
+ A = APFloat::copySign(APFloat(A.getSemantics()), A);
+ if (B.isNaN())
+ B = APFloat::copySign(APFloat(B.getSemantics()), B);
+ Recalc = true;
+ }
+ if (!Recalc && (AC.isInfinity() || BD.isInfinity() || AD.isInfinity() ||
+ BC.isInfinity())) {
+ if (A.isNaN())
+ A = APFloat::copySign(APFloat(A.getSemantics()), A);
+ if (B.isNaN())
+ B = APFloat::copySign(APFloat(B.getSemantics()), B);
+ if (C.isNaN())
+ C = APFloat::copySign(APFloat(C.getSemantics()), C);
+ if (D.isNaN())
+ D = APFloat::copySign(APFloat(D.getSemantics()), D);
+ Recalc = true;
+ }
+ if (Recalc) {
+ ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
+ ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
+ }
+ }
+}
+
+void HandleComplexComplexDiv(APFloat A, APFloat B, APFloat C, APFloat D,
+ APFloat &ResR, APFloat &ResI) {
+ // This is an implementation of complex division according to the
+ // constraints laid out in C11 Annex G. The implementation uses the
+ // following naming scheme:
+ // (a + ib) / (c + id)
+
+ int DenomLogB = 0;
+ APFloat MaxCD = maxnum(abs(C), abs(D));
+ if (MaxCD.isFinite()) {
+ DenomLogB = ilogb(MaxCD);
+ C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
+ D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
+ }
+ APFloat Denom = C * C + D * D;
+ ResR =
+ scalbn((A * C + B * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven);
+ ResI =
+ scalbn((B * C - A * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven);
+ if (ResR.isNaN() && ResI.isNaN()) {
+ if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
+ ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
+ ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
+ } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
+ D.isFinite()) {
+ A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0),
+ A);
+ B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0),
+ B);
+ ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
+ ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
+ } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
+ C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0),
+ C);
+ D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0),
+ D);
+ ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
+ ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
+ }
+ }
+}
+
bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
@@ -15225,55 +15323,7 @@ bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
!handleFloatFloatBinOp(Info, E, ResI, BO_Mul, B))
return false;
} else {
- // In the fully general case, we need to handle NaNs and infinities
- // robustly.
- APFloat AC = A * C;
- APFloat BD = B * D;
- APFloat AD = A * D;
- APFloat BC = B * C;
- ResR = AC - BD;
- ResI = AD + BC;
- if (ResR.isNaN() && ResI.isNaN()) {
- bool Recalc = false;
- if (A.isInfinity() || B.isInfinity()) {
- A = APFloat::copySign(
- APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
- B = APFloat::copySign(
- APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
- if (C.isNaN())
- C = APFloat::copySign(APFloat(C.getSemantics()), C);
- if (D.isNaN())
- D = APFloat::copySign(APFloat(D.getSemantics()), D);
- Recalc = true;
- }
- if (C.isInfinity() || D.isInfinity()) {
- C = APFloat::copySign(
- APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
- D = APFloat::copySign(
- APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
- if (A.isNaN())
- A = APFloat::copySign(APFloat(A.getSemantics()), A);
- if (B.isNaN())
- B = APFloat::copySign(APFloat(B.getSemantics()), B);
- Recalc = true;
- }
- if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
- AD.isInfinity() || BC.isInfinity())) {
- if (A.isNaN())
- A = APFloat::copySign(APFloat(A.getSemantics()), A);
- if (B.isNaN())
- B = APFloat::copySign(APFloat(B.getSemantics()), B);
- if (C.isNaN())
- C = APFloat::copySign(APFloat(C.getSemantics()), C);
- if (D.isNaN())
- D = APFloat::copySign(APFloat(D.getSemantics()), D);
- Recalc = true;
- }
- if (Recalc) {
- ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
- ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
- }
- }
+ HandleComplexComplexMul(A, B, C, D, ResR, ResI);
}
} else {
ComplexValue LHS = Result;
@@ -15311,39 +15361,7 @@ bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
// No real optimizations we can do here, stub out with zero.
B = APFloat::getZero(A.getSemantics());
}
- int DenomLogB = 0;
- APFloat MaxCD = maxnum(abs(C), abs(D));
- if (MaxCD.isFinite()) {
- DenomLogB = ilogb(MaxCD);
- C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
- D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
- }
- APFloat Denom = C * C + D * D;
- ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
- APFloat::rmNearestTiesToEven);
- ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
- APFloat::rmNearestTiesToEven);
- if (ResR.isNaN() && ResI.isNaN()) {
- if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
- ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
- ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
- } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
- D.isFinite()) {
- A = APFloat::copySign(
- APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
- B = APFloat::copySign(
- APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
- ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
- ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
- } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
- C = APFloat::copySign(
- APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
- D = APFloat::copySign(
- APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
- ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
- ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
- }
- }
+ HandleComplexComplexDiv(A, B, C, D, ResR, ResI);
}
} else {
if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
diff --git a/clang/lib/AST/Interp/ByteCodeExprGen.cpp b/clang/lib/AST/Interp/ByteCodeExprGen.cpp
index ff2b51e3fb6fa..077fd14bdd913 100644
--- a/clang/lib/AST/Interp/ByteCodeExprGen.cpp
+++ b/clang/lib/AST/Interp/ByteCodeExprGen.cpp
@@ -854,6 +854,35 @@ bool ByteCodeExprGen<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
if (const auto *AT = RHSType->getAs<AtomicType>())
RHSType = AT->getValueType();
+ // For ComplexComplex Mul, we have special ops to make their implementation
+ // easier.
+ BinaryOperatorKind Op = E->getOpcode();
+ if (Op == BO_Mul && LHSType->isAnyComplexType() &&
+ RHSType->isAnyComplexType()) {
+ assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
+ classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
+ PrimType ElemT =
+ classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
+ if (!this->visit(LHS))
+ return false;
+ if (!this->visit(RHS))
+ return false;
+ return this->emitMulc(ElemT, E);
+ }
+
+ if (Op == BO_Div && LHSType->isAnyComplexType() &&
+ RHSType->isAnyComplexType()) {
+ assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
+ classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
+ PrimType ElemT =
+ classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
+ if (!this->visit(LHS))
+ return false;
+ if (!this->visit(RHS))
+ return false;
+ return this->emitDivc(ElemT, E);
+ }
+
// Evaluate LHS and save value to LHSOffset.
bool LHSIsComplex;
unsigned LHSOffset;
@@ -897,22 +926,22 @@ bool ByteCodeExprGen<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
// For both LHS and RHS, either load the value from the complex pointer, or
// directly from the local variable. For index 1 (i.e. the imaginary part),
// just load 0 and do the operation anyway.
- auto loadComplexValue = [this](bool IsComplex, unsigned ElemIndex,
- unsigned Offset, const Expr *E) -> bool {
+ auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
+ unsigned ElemIndex, unsigned Offset,
+ const Expr *E) -> bool {
if (IsComplex) {
if (!this->emitGetLocal(PT_Ptr, Offset, E))
return false;
return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
ElemIndex, E);
}
- if (ElemIndex == 0)
+ if (ElemIndex == 0 || !LoadZero)
return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
E);
};
// Now we can get pointers to the LHS and RHS from the offsets above.
- BinaryOperatorKind Op = E->getOpcode();
for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
// Result pointer for the store later.
if (!this->DiscardResult) {
@@ -920,15 +949,14 @@ bool ByteCodeExprGen<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
return false;
}
- if (!loadComplexValue(LHSIsComplex, ElemIndex, LHSOffset, LHS))
- return false;
-
- if (!loadComplexValue(RHSIsComplex, ElemIndex, RHSOffset, RHS))
- return false;
-
// The actual operation.
switch (Op) {
case BO_Add:
+ if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
+ return false;
+
+ if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
+ return false;
if (ResultElemT == PT_Float) {
if (!this->emitAddf(getRoundingMode(E), E))
return false;
@@ -938,6 +966,11 @@ bool ByteCodeExprGen<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
}
break;
case BO_Sub:
+ if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
+ return false;
+
+ if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
+ return false;
if (ResultElemT == PT_Float) {
if (!this->emitSubf(getRoundingMode(E), E))
return false;
@@ -946,6 +979,36 @@ bool ByteCodeExprGen<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
return false;
}
break;
+ case BO_Mul:
+ if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
+ return false;
+
+ if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
+ return false;
+
+ if (ResultElemT == PT_Float) {
+ if (!this->emitMulf(getRoundingMode(E), E))
+ return false;
+ } else {
+ if (!this->emitMul(ResultElemT, E))
+ return false;
+ }
+ break;
+ case BO_Div:
+ if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
+ return false;
+
+ if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
+ return false;
+
+ if (ResultElemT == PT_Float) {
+ if (!this->emitDivf(getRoundingMode(E), E))
+ return false;
+ } else {
+ if (!this->emitDiv(ResultElemT, E))
+ return false;
+ }
+ break;
default:
return false;
diff --git a/clang/lib/AST/Interp/Interp.h b/clang/lib/AST/Interp/Interp.h
index f63711da90c7e..94218be250c04 100644
--- a/clang/lib/AST/Interp/Interp.h
+++ b/clang/lib/AST/Interp/Interp.h
@@ -13,6 +13,7 @@
#ifndef LLVM_CLANG_AST_INTERP_INTERP_H
#define LLVM_CLANG_AST_INTERP_INTERP_H
+#include "../ExprConstShared.h"
#include "Boolean.h"
#include "Floating.h"
#include "Function.h"
@@ -368,6 +369,134 @@ inline bool Mulf(InterpState &S, CodePtr OpPC, llvm::RoundingMode RM) {
S.Stk.push<Floating>(Result);
return CheckFloatResult(S, OpPC, Result, Status);
}
+
+template <PrimType Name, class T = typename PrimConv<Name>::T>
+inline bool Mulc(InterpState &S, CodePtr OpPC) {
+ const Pointer &RHS = S.Stk.pop<Pointer>();
+ const Pointer &LHS = S.Stk.pop<Pointer>();
+ const Pointer &Result = S.Stk.peek<Pointer>();
+
+ if constexpr (std::is_same_v<T, Floating>) {
+ APFloat A = LHS.atIndex(0).deref<Floating>().getAPFloat();
+ APFloat B = LHS.atIndex(1).deref<Floating>().getAPFloat();
+ APFloat C = RHS.atIndex(0).deref<Floating>().getAPFloat();
+ APFloat D = RHS.atIndex(1).deref<Floating>().getAPFloat();
+
+ APFloat ResR(A.getSemantics());
+ APFloat ResI(A.getSemantics());
+ HandleComplexComplexMul(A, B, C, D, ResR, ResI);
+
+ // Copy into the result.
+ Result.atIndex(0).deref<Floating>() = Floating(ResR);
+ Result.atIndex(0).initialize();
+ Result.atIndex(1).deref<Floating>() = Floating(ResI);
+ Result.atIndex(1).initialize();
+ Result.initialize();
+ } else {
+ // Integer element type.
+ const T &LHSR = LHS.atIndex(0).deref<T>();
+ const T &LHSI = LHS.atIndex(1).deref<T>();
+ const T &RHSR = RHS.atIndex(0).deref<T>();
+ const T &RHSI = RHS.atIndex(1).deref<T>();
+ unsigned Bits = LHSR.bitWidth();
+
+ // real(Result) = (real(LHS) * real(RHS)) - (imag(LHS) * imag(RHS))
+ T A;
+ if (T::mul(LHSR, RHSR, Bits, &A))
+ return false;
+ T B;
+ if (T::mul(LHSI, RHSI, Bits, &B))
+ return false;
+ if (T::sub(A, B, Bits, &Result.atIndex(0).deref<T>()))
+ return false;
+ Result.atIndex(0).initialize();
+
+ // imag(Result) = (real(LHS) * imag(RHS)) + (imag(LHS) * real(RHS))
+ if (T::mul(LHSR, RHSI, Bits, &A))
+ return false;
+ if (T::mul(LHSI, RHSR, Bits, &B))
+ return false;
+ if (T::add(A, B, Bits, &Result.atIndex(1).deref<T>()))
+ return false;
+ Result.atIndex(1).initialize();
+ Result.initialize();
+ }
+
+ return true;
+}
+
+template <PrimType Name, class T = typename PrimConv<Name>::T>
+inline bool Divc(InterpState &S, CodePtr OpPC) {
+ const Pointer &RHS = S.Stk.pop<Pointer>();
+ const Pointer &LHS = S.Stk.pop<Pointer>();
+ const Pointer &Result = S.Stk.peek<Pointer>();
+
+ if constexpr (std::is_same_v<T, Floating>) {
+ APFloat A = LHS.atIndex(0).deref<Floating>().getAPFloat();
+ APFloat B = LHS.atIndex(1).deref<Floating>().getAPFloat();
+ APFloat C = RHS.atIndex(0).deref<Floating>().getAPFloat();
+ APFloat D = RHS.atIndex(1).deref<Floating>().getAPFloat();
+
+ APFloat ResR(A.getSemantics());
+ APFloat ResI(A.getSemantics());
+ HandleComplexComplexDiv(A, B, C, D, ResR, ResI);
+
+ // Copy into the result.
+ Result.atIndex(0).deref<Floating>() = Floating(ResR);
+ Result.atIndex(0).initialize();
+ Result.atIndex(1).deref<Floating>() = Floating(ResI);
+ Result.atIndex(1).initialize();
+ Result.initialize();
+ } else {
+ // Integer element type.
+ const T &LHSR = LHS.atIndex(0).deref<T>();
+ const T &LHSI = LHS.atIndex(1).deref<T>();
+ const T &RHSR = RHS.atIndex(0).deref<T>();
+ const T &RHSI = RHS.atIndex(1).deref<T>();
+ unsigned Bits = LHSR.bitWidth();
+ const T Zero = T::from(0, Bits);
+
+ if (Compare(RHSR, Zero) == ComparisonCategoryResult::Equal &&
+ Compare(RHSI, Zero) == ComparisonCategoryResult::Equal) {
+ const SourceInfo &E = S.Current->getSource(OpPC);
+ S.FFDiag(E, diag::note_expr_divide_by_zero);
+ return false;
+ }
+
+ // Den = real(RHS)² + imag(RHS)²
+ T A, B;
+ if (T::mul(RHSR, RHSR, Bits, &A) || T::mul(RHSI, RHSI, Bits, &B))
+ return false;
+ T Den;
+ if (T::add(A, B, Bits, &Den))
+ return false;
+
+ // real(Result) = ((real(LHS) * real(RHS)) + (imag(LHS) * imag(RHS))) / Den
+ T &ResultR = Result.atIndex(0).deref<T>();
+ T &ResultI = Result.atIndex(1).deref<T>();
+
+ if (T::mul(LHSR, RHSR, Bits, &A) || T::mul(LHSI, RHSI, Bits, &B))
+ return false;
+ if (T::add(A, B, Bits, &ResultR))
+ return false;
+ if (T::div(ResultR, Den, Bits, &ResultR))
+ return false;
+ Result.atIndex(0).initialize();
+
+ // imag(Result) = ((imag(LHS) * real(RHS)) - (real(LHS) * imag(RHS))) / Den
+ if (T::mul(LHSI, RHSR, Bits, &A) || T::mul(LHSR, RHSI, Bits, &B))
+ return false;
+ if (T::sub(A, B, Bits, &ResultI))
+ return false;
+ if (T::div(ResultI, Den, Bits, &ResultI))
+ return false;
+ Result.atIndex(1).initialize()...
[truncated]
|
Ping |
AaronBallman
approved these changes
Jun 17, 2024
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Labels
clang:frontend
Language frontend issues, e.g. anything involving "Sema"
clang
Clang issues not falling into any other category
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Depends on the multiplication PR.