Skip to content

[mlir][linalg] Implement Conv2D using Winograd Conv2D algorithm #96181

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Jul 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 117 additions & 0 deletions mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -154,4 +154,121 @@ def Linalg_SoftmaxOp : Linalg_Op<"softmax",
let hasVerifier = 1;
}

def Linalg_WinogradFilterTransformOp :
Linalg_Op<"winograd_filter_transform", [AllElementTypesMatch<["filter", "output"]>]> {
let summary = "Winograd filter transform operator";
let description = [{
Winograd Conv2D algorithm will convert linalg Conv2D operator into batched
matrix multiply. Before the matrix multiply, it will convert filter and
input into a format suitable for batched matrix multiply. After the matrix
multiply, it will convert output to the final result tensor.

The algorithm F(m x m, r x r) is

Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A

The size of output Y is m x m. The size of filter g is r x r. The size of
input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are
transformation matrices.

This operator is defined to represent the high level concept of filter
transformation (G x g x G^T) in the Winograd Conv2D algorithm.
}];

let arguments = (ins TensorRankOf<[AnyType], [4]>:$filter,
TensorRankOf<[AnyType], [4]>:$output,
I64Attr:$m,
I64Attr:$r
);

let results = (outs TensorRankOf<[AnyType], [4]>:$result);
let assemblyFormat = [{
attr-dict
`m` `(` $m `)`
`r` `(` $r `)`
`ins` `(` $filter `:` type($filter) `)`
`outs` `(` $output `:` type($output) `)`
`->` type($result)
}];
let hasVerifier = 1;
}

def Linalg_WinogradInputTransformOp :
Linalg_Op<"winograd_input_transform", [AllElementTypesMatch<["input", "output"]>]> {
let summary = "Winograd input transform operator";
let description = [{
Winograd Conv2D algorithm will convert linalg Conv2D operator into batched
matrix multiply. Before the matrix multiply, it will convert filter and
input into a format suitable for batched matrix multiply. After the matrix
multiply, it will convert output to the final result tensor.

The algorithm F(m x m, r x r) is

Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A

The size of output Y is m x m. The size of filter g is r x r. The size of
input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are
transformation matrices.

This operator is defined to represent the high level concept of input
transformation (B^T x d x B) in the Winograd Conv2D algorithm.
}];

let arguments = (ins TensorRankOf<[AnyType], [4]>:$input,
TensorRankOf<[AnyType], [6]>:$output,
I64Attr:$m,
I64Attr:$r
);

let results = (outs TensorRankOf<[AnyType], [6]>:$result);
let assemblyFormat = [{
attr-dict
`m` `(` $m `)`
`r` `(` $r `)`
`ins` `(` $input `:` type($input) `)`
`outs` `(` $output `:` type($output) `)`
`->` type($result)
}];
let hasVerifier = 1;
}

def Linalg_WinogradOutputTransformOp :
Linalg_Op<"winograd_output_transform", [AllElementTypesMatch<["value", "output"]>]> {
let summary = "Winograd output transform operator";
let description = [{
Winograd Conv2D algorithm will convert linalg Conv2D operator into batched
matrix multiply. Before the matrix multiply, it will convert filter and
input into a format suitable for batched matrix multiply. After the matrix
multiply, it will convert output to the final result tensor.

The algorithm F(m x m, r x r) is

Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A

The size of output Y is m x m. The size of filter g is r x r. The size of
input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are
transformation matrices.

This operator is defined to represent the high level concept of output
transformation (A^T x y x A) in the Winograd Conv2D algorithm.
}];

let arguments = (ins TensorRankOf<[AnyType], [6]>:$value,
TensorRankOf<[AnyType], [4]>:$output,
I64Attr:$m,
I64Attr:$r
);

let results = (outs TensorRankOf<[AnyType], [4]>:$result);
let assemblyFormat = [{
attr-dict
`m` `(` $m `)`
`r` `(` $r `)`
`ins` `(` $value `:` type($value) `)`
`outs` `(` $output `:` type($output) `)`
`->` type($result)
}];
let hasVerifier = 1;
}

#endif // LINALG_OPS
4 changes: 4 additions & 0 deletions mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
Original file line number Diff line number Diff line change
Expand Up @@ -1735,6 +1735,10 @@ void populateTransposeMatmulPatterns(RewritePatternSet &patterns,
void populateBlockPackMatmulPatterns(RewritePatternSet &patterns,
const ControlBlockPackMatmulFn &controlFn);

/// Patterns to apply Winograd Conv2D algorithm F(m x m, r x r).
void populateWinogradConv2DPatterns(RewritePatternSet &patterns, int64_t m,
int64_t r);

/// Adds patterns that reduce the rank of named contraction ops that have
/// unit dimensions in the operand(s) by converting to a sequence of `collapse_shape`,
/// `<corresponding linalg named op>`, `expand_shape` (if on tensors). For example a
Expand Down
116 changes: 116 additions & 0 deletions mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2739,6 +2739,122 @@ FailureOr<SmallVector<Value>> SoftmaxOp::decomposeOperation(OpBuilder &b) {
return SmallVector<Value>{result};
}

//===----------------------------------------------------------------------===//
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

These verifiers will not work for dynamic shapes. Can you support dynamic cases? The transform is only supported for static shapes right now, but shapes can become dynamic when tiling.

You can create an expected output shape from the input, allowing dynamic dims, and compare with the actual output shape. This helper may be useful:

LogicalResult mlir::verifyCompatibleShape(ArrayRef<int64_t> shape1,

This way will also make it easy to check that the batch/channel dimensions match for the input and output.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we support static shapes in the upstream first? I added a TODO for dynamic cases.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It has a tendency to not get done and not having the shape handling can mask other issues. Usually it's better to do it right, do it once.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for your review. I updated the verify() functions to consider dynamic shapes. I also added test cases for dynamic shapes.

// WinogradFilterTransformOp
//===----------------------------------------------------------------------===//

LogicalResult WinogradFilterTransformOp::verify() {
auto filterType = cast<ShapedType>(getFilter().getType());
ArrayRef<int64_t> filterShape = filterType.getShape();
int64_t filterH = filterShape[1];
int64_t filterW = filterShape[2];
int64_t r = getR();
int64_t m = getM();

if (filterH != r && filterH != 1)
return emitOpError("expect filter height either equals to r or 1");
if (filterW != r && filterW != 1)
return emitOpError("expect filter width either equals to r or 1");
if (filterH == 1 && filterW == 1)
return emitOpError("expect either filter height or width equals to r");

SmallVector<int64_t> expectedOutputShape;
expectedOutputShape.push_back(filterH == r ? m + r - 1 : 1);
expectedOutputShape.push_back(filterW == r ? m + r - 1 : 1);
expectedOutputShape.push_back(filterShape[3]);
expectedOutputShape.push_back(filterShape[0]);

auto outputType = cast<ShapedType>(getOutput().getType());
ArrayRef<int64_t> outputShape = outputType.getShape();
if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) {
return emitOpError("the output shape is not expected");
}
return success();
}

//===----------------------------------------------------------------------===//
// WinogradInputTransformOp
//===----------------------------------------------------------------------===//

LogicalResult WinogradInputTransformOp::verify() {
auto inputType = cast<ShapedType>(getInput().getType());
ArrayRef<int64_t> inputShape = inputType.getShape();
int64_t inputH = inputShape[1];
int64_t inputW = inputShape[2];
int m = getM();
int r = getR();
int64_t tileSize = m + r - 1;
bool leftTransform = inputH != 1;
bool rightTransform = inputW != 1;

SmallVector<int64_t> expectedOutputShape(6, inputH);
if (ShapedType::isDynamic(inputH)) {
expectedOutputShape[0] = tileSize;
expectedOutputShape[2] = ShapedType::kDynamic;
} else {
expectedOutputShape[0] = leftTransform ? tileSize : 1;
expectedOutputShape[2] = leftTransform ? (inputH - (r - 1)) / m : 1;
}
if (ShapedType::isDynamic(inputW)) {
expectedOutputShape[1] = tileSize;
expectedOutputShape[3] = ShapedType::kDynamic;
} else {
expectedOutputShape[1] = rightTransform ? tileSize : 1;
expectedOutputShape[3] = rightTransform ? (inputW - (r - 1)) / m : 1;
}
expectedOutputShape[4] = inputShape[0];
expectedOutputShape[5] = inputShape[3];

auto outputType = cast<ShapedType>(getOutput().getType());
ArrayRef<int64_t> outputShape = outputType.getShape();
if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) {
return emitOpError("the output shape is not expected");
}
return success();
}

//===----------------------------------------------------------------------===//
// WinogradOutputTransformOp
//===----------------------------------------------------------------------===//

LogicalResult WinogradOutputTransformOp::verify() {
auto valueType = cast<ShapedType>(getValue().getType());
ArrayRef<int64_t> valueShape = valueType.getShape();
int64_t valueH = valueShape[0];
int64_t valueW = valueShape[1];
int64_t valueTileH = valueShape[2];
int64_t valueTileW = valueShape[3];
int m = getM();
int r = getR();
bool leftTransform = valueH != 1;
bool rightTransform = valueW != 1;

SmallVector<int64_t> expectedOutputShape(4, valueH);
if (ShapedType::isDynamic(valueH) || ShapedType::isDynamic(valueTileH)) {
expectedOutputShape[1] = ShapedType::kDynamic;
} else {
if (valueH != (leftTransform ? m + r - 1 : 1))
return emitOpError("expect input height equals to input tile size");
expectedOutputShape[1] = (leftTransform ? m : 1) * valueTileH;
}
if (ShapedType::isDynamic(valueW) || ShapedType::isDynamic(valueTileW)) {
expectedOutputShape[2] = ShapedType::kDynamic;
} else {
if (valueW != (rightTransform ? m + r - 1 : 1))
return emitOpError("expect input width equals to input tile size");
expectedOutputShape[2] = (rightTransform ? m : 1) * valueTileW;
}
expectedOutputShape[0] = valueShape[4];
expectedOutputShape[3] = valueShape[5];

auto outputType = cast<ShapedType>(getOutput().getType());
ArrayRef<int64_t> outputShape = outputType.getShape();
if (failed(verifyCompatibleShape(expectedOutputShape, outputShape))) {
return emitOpError("the output shape is not expected");
}
return success();
}

//===----------------------------------------------------------------------===//
// LinalgDialect
//===----------------------------------------------------------------------===//
Expand Down
1 change: 1 addition & 0 deletions mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
Transforms.cpp
TransposeConv2D.cpp
Vectorization.cpp
WinogradConv2D.cpp

ADDITIONAL_HEADER_DIRS
${MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/Linalg
Expand Down
Loading
Loading