Skip to content

[mlir][linalg] Mark xfers as in-bounds when masking depthwise convs #96771

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 27, 2024

Conversation

MacDue
Copy link
Member

@MacDue MacDue commented Jun 26, 2024

If this is not set the fact that the dynamic channel is in-bounds cannot be inferred automatically (like it can for static sizes), which eventually leads to it being marked as out-of-bounds (which prevents some rewrites).

If this is not set the fact that the dynamic channel is in-bounds
cannot be inferred automatically (like it can for static sizes), which
eventually leads to it being marked as out-of-bounds (which prevents
some rewrites).
@llvmbot
Copy link
Member

llvmbot commented Jun 26, 2024

@llvm/pr-subscribers-mlir-linalg

Author: Benjamin Maxwell (MacDue)

Changes

If this is not set the fact that the dynamic channel is in-bounds cannot be inferred automatically (like it can for static sizes), which eventually leads to it being marked as out-of-bounds (which prevents some rewrites).


Full diff: https://github.com/llvm/llvm-project/pull/96771.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp (+5)
  • (modified) mlir/test/Dialect/Linalg/vectorize-conv-masked-and-scalable.mlir (+12-12)
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 511835a226e7a..3a75d2ac08157 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -3234,6 +3234,11 @@ struct Conv1DGenerator
       auto maskType =
           VectorType::get(maskShape, rewriter.getI1Type(), scalableDims);
 
+      SmallVector<bool> inBounds(maskShape.size(), true);
+      auto xferOp = cast<VectorTransferOpInterface>(opToMask);
+      xferOp->setAttr(xferOp.getInBoundsAttrName(),
+                      rewriter.getBoolArrayAttr(inBounds));
+
       SmallVector<OpFoldResult> mixedDims = vector::getMixedSizesXfer(
           cast<LinalgOp>(op).hasPureTensorSemantics(), opToMask, rewriter);
 
diff --git a/mlir/test/Dialect/Linalg/vectorize-conv-masked-and-scalable.mlir b/mlir/test/Dialect/Linalg/vectorize-conv-masked-and-scalable.mlir
index 84b556d80887c..4964a8d2e0db8 100644
--- a/mlir/test/Dialect/Linalg/vectorize-conv-masked-and-scalable.mlir
+++ b/mlir/test/Dialect/Linalg/vectorize-conv-masked-and-scalable.mlir
@@ -34,18 +34,18 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[C8:.*]] = arith.constant 8 : index
 // CHECK:           %[[MASK_IN:.*]] = vector.create_mask %[[C1]], %[[C8]], %[[CH_DIM_IN]] : vector<1x8x4xi1>
 /// Read the input tensor
-// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : tensor<1x8x?xi8>, vector<1x8x4xi8> } : vector<1x8x4xi1> -> vector<1x8x4xi8>
+// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x8x?xi8>, vector<1x8x4xi8> } : vector<1x8x4xi1> -> vector<1x8x4xi8>
 
 /// Create a mask for the filter tensor
 // CHECK:           %[[CH_DIM_FLT:.*]] = tensor.dim %[[FILTER]], %[[C1]] : tensor<1x?xi8>
 // CHECK:           %[[MASK_FLT:.*]] = vector.create_mask %[[C1]], %[[CH_DIM_FLT]] : vector<1x4xi1>
 /// Read the filter tensor
-// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] : tensor<1x?xi8>, vector<1x4xi8> } : vector<1x4xi1> -> vector<1x4xi8>
+// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true]} : tensor<1x?xi8>, vector<1x4xi8> } : vector<1x4xi1> -> vector<1x4xi8>
 
 /// Create a mask for the output tensor
 // CHECK:           %[[CH_DIM_OUT:.*]] = tensor.dim %[[OUTPUT]], %[[C2]] : tensor<1x8x?xi8>
 // CHECK:           %[[MASK_OUT:.*]] = vector.create_mask %[[C1]], %[[C8]], %[[CH_DIM_OUT]] : vector<1x8x4xi1>
-// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : tensor<1x8x?xi8>, vector<1x8x4xi8> } : vector<1x8x4xi1> -> vector<1x8x4xi8>
+// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x8x?xi8>, vector<1x8x4xi8> } : vector<1x8x4xi1> -> vector<1x8x4xi8>
 
 /// Convolution
 // CHECK:           %[[IN_1:.*]] = vector.extract_strided_slice %[[VEC_IN]] {offsets = [0, 0, 0], sizes = [1, 8, 4], strides = [1, 1, 1]} : vector<1x8x4xi8> to vector<1x8x4xi8>
@@ -55,7 +55,7 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[MULI:.*]] = arith.muli %[[IN_1]], %[[FLT_1_B]] : vector<1x8x4xi8>
 // CHECK:           %[[ADDI:.*]] = arith.addi %[[MULI]], %[[OUT_1]] : vector<1x8x4xi8>
 // CHECK:           %[[OUT_INS:.*]] = vector.insert_strided_slice %[[ADDI]], %[[VEC_OUT]] {offsets = [0, 0, 0], strides = [1, 1, 1]} : vector<1x8x4xi8> into vector<1x8x4xi8>
-// CHECK:           %[[OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] : vector<1x8x4xi8>, tensor<1x8x?xi8> } : vector<1x8x4xi1> -> tensor<1x8x?xi8>
+// CHECK:           %[[OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x8x4xi8>, tensor<1x8x?xi8> } : vector<1x8x4xi1> -> tensor<1x8x?xi8>
 // CHECK:           return %[[OUT]] : tensor<1x8x?xi8>
 
 // -----
@@ -95,19 +95,19 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[C8:.*]] = arith.constant 8 : index
 // CHECK:           %[[MASK_IN:.*]] = vector.create_mask %[[C1]], %[[C8]], %[[CH_DIM_IN]] : vector<1x8x[4]xi1>
 /// Read the input tensor
-// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : tensor<1x8x?xi8>, vector<1x8x[4]xi8> } : vector<1x8x[4]xi1> -> vector<1x8x[4]xi8>
+// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x8x?xi8>, vector<1x8x[4]xi8> } : vector<1x8x[4]xi1> -> vector<1x8x[4]xi8>
 
 /// Create a mask for the filter tensor
 // CHECK:           %[[CH_DIM_FLT:.*]] = tensor.dim %[[FILTER]], %[[C1]] : tensor<1x?xi8>
 // CHECK:           %[[MASK_FLT:.*]] = vector.create_mask %[[C1]], %[[CH_DIM_FLT]] : vector<1x[4]xi1>
 /// Read the filter tensor
-// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] : tensor<1x?xi8>, vector<1x[4]xi8> } : vector<1x[4]xi1> -> vector<1x[4]xi8>
+// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true]} : tensor<1x?xi8>, vector<1x[4]xi8> } : vector<1x[4]xi1> -> vector<1x[4]xi8>
 
 /// Create a mask for the output tensor
 // CHECK:           %[[CH_DIM_OUT:.*]] = tensor.dim %[[OUTPUT]], %[[C2]] : tensor<1x8x?xi8>
 // CHECK:           %[[MASK_OUT:.*]] = vector.create_mask %[[C1]], %[[C8]], %[[CH_DIM_OUT]] : vector<1x8x[4]xi1>
 /// Read the output tensor
-// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : tensor<1x8x?xi8>, vector<1x8x[4]xi8> } : vector<1x8x[4]xi1> -> vector<1x8x[4]xi8>
+// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x8x?xi8>, vector<1x8x[4]xi8> } : vector<1x8x[4]xi1> -> vector<1x8x[4]xi8>
 
 /// Convolution
 // CHECK:           %[[IN_1:.*]] = vector.extract_strided_slice %[[VEC_IN]] {offsets = [0, 0, 0], sizes = [1, 8, 4], strides = [1, 1, 1]} : vector<1x8x[4]xi8> to vector<1x8x[4]xi8>
@@ -117,7 +117,7 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[MULI:.*]] = arith.muli %[[IN_1]], %[[FLT_1_B]] : vector<1x8x[4]xi8>
 // CHECK:           %[[ADDI:.*]] = arith.addi %[[MULI]], %[[OUT_1]] : vector<1x8x[4]xi8>
 // CHECK:           %[[OUT_INS:.*]] = vector.insert_strided_slice %[[ADDI]], %[[VEC_OUT]] {offsets = [0, 0, 0], strides = [1, 1, 1]} : vector<1x8x[4]xi8> into vector<1x8x[4]xi8>
-// CHECK:           %[[OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] : vector<1x8x[4]xi8>, tensor<1x8x?xi8> } : vector<1x8x[4]xi1> -> tensor<1x8x?xi8>
+// CHECK:           %[[OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x8x[4]xi8>, tensor<1x8x?xi8> } : vector<1x8x[4]xi1> -> tensor<1x8x?xi8>
 // CHECK:           return %[[OUT]] : tensor<1x8x?xi8>
 
 // -----
@@ -157,19 +157,19 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[C5:.*]] = arith.constant 5 : index
 // CHECK:           %[[MASK_IN:.*]] = vector.create_mask %[[C3]], %[[C5]], %[[CH_DIM_IN]] : vector<3x4x[4]xi1>
 /// Read the input tensor
-// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : memref<3x5x?xf32>, vector<3x4x[4]xf32> } : vector<3x4x[4]xi1> -> vector<3x4x[4]xf32>
+// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : memref<3x5x?xf32>, vector<3x4x[4]xf32> } : vector<3x4x[4]xi1> -> vector<3x4x[4]xf32>
 
 /// Create a mask for the filter tensor
 // CHECK:           %[[CH_DIM_FLT:.*]] = memref.dim %[[FILTER]], %[[C1]] : memref<2x?xf32>
 // CHECK:           %[[MASK_FLT:.*]] = vector.create_mask %[[C2]], %[[CH_DIM_FLT]] : vector<2x[4]xi1>
 /// Read the filter tensor
-// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] : memref<2x?xf32>, vector<2x[4]xf32> } : vector<2x[4]xi1> -> vector<2x[4]xf32>
+// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true]} : memref<2x?xf32>, vector<2x[4]xf32> } : vector<2x[4]xi1> -> vector<2x[4]xf32>
 
 /// Create a mask for the output tensor
 // CHECK:           %[[CH_DIM_OUT:.*]] = memref.dim %[[OUTPUT]], %[[C2]] : memref<3x2x?xf32>
 // CHECK:           %[[MASK_OUT:.*]] = vector.create_mask %[[C3]], %[[C2]], %[[CH_DIM_OUT]] : vector<3x2x[4]xi1>
 /// Read the output tensor
-// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : memref<3x2x?xf32>, vector<3x2x[4]xf32> } : vector<3x2x[4]xi1> -> vector<3x2x[4]xf32>
+// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : memref<3x2x?xf32>, vector<3x2x[4]xf32> } : vector<3x2x[4]xi1> -> vector<3x2x[4]xf32>
 
 /// Convolution
 // CHECK:           %[[IN_1:.*]] = vector.extract_strided_slice %[[VEC_IN]] {offsets = [0, 0, 0], sizes = [3, 2, 4], strides = [1, 1, 1]} : vector<3x4x[4]xf32> to vector<3x2x[4]xf32>
@@ -182,4 +182,4 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[FLT_2_B:.*]] = vector.broadcast %[[FLT_2]] : vector<[4]xf32> to vector<3x2x[4]xf32>
 // CHECK:           %[[FMA_2:.*]] = vector.fma %[[IN_2]], %[[FLT_2_B]], %[[FMA_1]] : vector<3x2x[4]xf32>
 // CHECK:           %[[OUT_INS:.*]] = vector.insert_strided_slice %[[FMA_2]], %[[VEC_OUT]] {offsets = [0, 0, 0], strides = [1, 1, 1]} : vector<3x2x[4]xf32> into vector<3x2x[4]xf32>
-// CHECK:           vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] : vector<3x2x[4]xf32>, memref<3x2x?xf32> } : vector<3x2x[4]xi1>
+// CHECK:           vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<3x2x[4]xf32>, memref<3x2x?xf32> } : vector<3x2x[4]xi1>

@llvmbot
Copy link
Member

llvmbot commented Jun 26, 2024

@llvm/pr-subscribers-mlir

Author: Benjamin Maxwell (MacDue)

Changes

If this is not set the fact that the dynamic channel is in-bounds cannot be inferred automatically (like it can for static sizes), which eventually leads to it being marked as out-of-bounds (which prevents some rewrites).


Full diff: https://github.com/llvm/llvm-project/pull/96771.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp (+5)
  • (modified) mlir/test/Dialect/Linalg/vectorize-conv-masked-and-scalable.mlir (+12-12)
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 511835a226e7a..3a75d2ac08157 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -3234,6 +3234,11 @@ struct Conv1DGenerator
       auto maskType =
           VectorType::get(maskShape, rewriter.getI1Type(), scalableDims);
 
+      SmallVector<bool> inBounds(maskShape.size(), true);
+      auto xferOp = cast<VectorTransferOpInterface>(opToMask);
+      xferOp->setAttr(xferOp.getInBoundsAttrName(),
+                      rewriter.getBoolArrayAttr(inBounds));
+
       SmallVector<OpFoldResult> mixedDims = vector::getMixedSizesXfer(
           cast<LinalgOp>(op).hasPureTensorSemantics(), opToMask, rewriter);
 
diff --git a/mlir/test/Dialect/Linalg/vectorize-conv-masked-and-scalable.mlir b/mlir/test/Dialect/Linalg/vectorize-conv-masked-and-scalable.mlir
index 84b556d80887c..4964a8d2e0db8 100644
--- a/mlir/test/Dialect/Linalg/vectorize-conv-masked-and-scalable.mlir
+++ b/mlir/test/Dialect/Linalg/vectorize-conv-masked-and-scalable.mlir
@@ -34,18 +34,18 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[C8:.*]] = arith.constant 8 : index
 // CHECK:           %[[MASK_IN:.*]] = vector.create_mask %[[C1]], %[[C8]], %[[CH_DIM_IN]] : vector<1x8x4xi1>
 /// Read the input tensor
-// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : tensor<1x8x?xi8>, vector<1x8x4xi8> } : vector<1x8x4xi1> -> vector<1x8x4xi8>
+// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x8x?xi8>, vector<1x8x4xi8> } : vector<1x8x4xi1> -> vector<1x8x4xi8>
 
 /// Create a mask for the filter tensor
 // CHECK:           %[[CH_DIM_FLT:.*]] = tensor.dim %[[FILTER]], %[[C1]] : tensor<1x?xi8>
 // CHECK:           %[[MASK_FLT:.*]] = vector.create_mask %[[C1]], %[[CH_DIM_FLT]] : vector<1x4xi1>
 /// Read the filter tensor
-// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] : tensor<1x?xi8>, vector<1x4xi8> } : vector<1x4xi1> -> vector<1x4xi8>
+// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true]} : tensor<1x?xi8>, vector<1x4xi8> } : vector<1x4xi1> -> vector<1x4xi8>
 
 /// Create a mask for the output tensor
 // CHECK:           %[[CH_DIM_OUT:.*]] = tensor.dim %[[OUTPUT]], %[[C2]] : tensor<1x8x?xi8>
 // CHECK:           %[[MASK_OUT:.*]] = vector.create_mask %[[C1]], %[[C8]], %[[CH_DIM_OUT]] : vector<1x8x4xi1>
-// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : tensor<1x8x?xi8>, vector<1x8x4xi8> } : vector<1x8x4xi1> -> vector<1x8x4xi8>
+// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x8x?xi8>, vector<1x8x4xi8> } : vector<1x8x4xi1> -> vector<1x8x4xi8>
 
 /// Convolution
 // CHECK:           %[[IN_1:.*]] = vector.extract_strided_slice %[[VEC_IN]] {offsets = [0, 0, 0], sizes = [1, 8, 4], strides = [1, 1, 1]} : vector<1x8x4xi8> to vector<1x8x4xi8>
@@ -55,7 +55,7 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[MULI:.*]] = arith.muli %[[IN_1]], %[[FLT_1_B]] : vector<1x8x4xi8>
 // CHECK:           %[[ADDI:.*]] = arith.addi %[[MULI]], %[[OUT_1]] : vector<1x8x4xi8>
 // CHECK:           %[[OUT_INS:.*]] = vector.insert_strided_slice %[[ADDI]], %[[VEC_OUT]] {offsets = [0, 0, 0], strides = [1, 1, 1]} : vector<1x8x4xi8> into vector<1x8x4xi8>
-// CHECK:           %[[OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] : vector<1x8x4xi8>, tensor<1x8x?xi8> } : vector<1x8x4xi1> -> tensor<1x8x?xi8>
+// CHECK:           %[[OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x8x4xi8>, tensor<1x8x?xi8> } : vector<1x8x4xi1> -> tensor<1x8x?xi8>
 // CHECK:           return %[[OUT]] : tensor<1x8x?xi8>
 
 // -----
@@ -95,19 +95,19 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[C8:.*]] = arith.constant 8 : index
 // CHECK:           %[[MASK_IN:.*]] = vector.create_mask %[[C1]], %[[C8]], %[[CH_DIM_IN]] : vector<1x8x[4]xi1>
 /// Read the input tensor
-// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : tensor<1x8x?xi8>, vector<1x8x[4]xi8> } : vector<1x8x[4]xi1> -> vector<1x8x[4]xi8>
+// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x8x?xi8>, vector<1x8x[4]xi8> } : vector<1x8x[4]xi1> -> vector<1x8x[4]xi8>
 
 /// Create a mask for the filter tensor
 // CHECK:           %[[CH_DIM_FLT:.*]] = tensor.dim %[[FILTER]], %[[C1]] : tensor<1x?xi8>
 // CHECK:           %[[MASK_FLT:.*]] = vector.create_mask %[[C1]], %[[CH_DIM_FLT]] : vector<1x[4]xi1>
 /// Read the filter tensor
-// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] : tensor<1x?xi8>, vector<1x[4]xi8> } : vector<1x[4]xi1> -> vector<1x[4]xi8>
+// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true]} : tensor<1x?xi8>, vector<1x[4]xi8> } : vector<1x[4]xi1> -> vector<1x[4]xi8>
 
 /// Create a mask for the output tensor
 // CHECK:           %[[CH_DIM_OUT:.*]] = tensor.dim %[[OUTPUT]], %[[C2]] : tensor<1x8x?xi8>
 // CHECK:           %[[MASK_OUT:.*]] = vector.create_mask %[[C1]], %[[C8]], %[[CH_DIM_OUT]] : vector<1x8x[4]xi1>
 /// Read the output tensor
-// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : tensor<1x8x?xi8>, vector<1x8x[4]xi8> } : vector<1x8x[4]xi1> -> vector<1x8x[4]xi8>
+// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x8x?xi8>, vector<1x8x[4]xi8> } : vector<1x8x[4]xi1> -> vector<1x8x[4]xi8>
 
 /// Convolution
 // CHECK:           %[[IN_1:.*]] = vector.extract_strided_slice %[[VEC_IN]] {offsets = [0, 0, 0], sizes = [1, 8, 4], strides = [1, 1, 1]} : vector<1x8x[4]xi8> to vector<1x8x[4]xi8>
@@ -117,7 +117,7 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[MULI:.*]] = arith.muli %[[IN_1]], %[[FLT_1_B]] : vector<1x8x[4]xi8>
 // CHECK:           %[[ADDI:.*]] = arith.addi %[[MULI]], %[[OUT_1]] : vector<1x8x[4]xi8>
 // CHECK:           %[[OUT_INS:.*]] = vector.insert_strided_slice %[[ADDI]], %[[VEC_OUT]] {offsets = [0, 0, 0], strides = [1, 1, 1]} : vector<1x8x[4]xi8> into vector<1x8x[4]xi8>
-// CHECK:           %[[OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] : vector<1x8x[4]xi8>, tensor<1x8x?xi8> } : vector<1x8x[4]xi1> -> tensor<1x8x?xi8>
+// CHECK:           %[[OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x8x[4]xi8>, tensor<1x8x?xi8> } : vector<1x8x[4]xi1> -> tensor<1x8x?xi8>
 // CHECK:           return %[[OUT]] : tensor<1x8x?xi8>
 
 // -----
@@ -157,19 +157,19 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[C5:.*]] = arith.constant 5 : index
 // CHECK:           %[[MASK_IN:.*]] = vector.create_mask %[[C3]], %[[C5]], %[[CH_DIM_IN]] : vector<3x4x[4]xi1>
 /// Read the input tensor
-// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : memref<3x5x?xf32>, vector<3x4x[4]xf32> } : vector<3x4x[4]xi1> -> vector<3x4x[4]xf32>
+// CHECK:           %[[VEC_IN:.*]] = vector.mask %[[MASK_IN]] { vector.transfer_read %[[INPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : memref<3x5x?xf32>, vector<3x4x[4]xf32> } : vector<3x4x[4]xi1> -> vector<3x4x[4]xf32>
 
 /// Create a mask for the filter tensor
 // CHECK:           %[[CH_DIM_FLT:.*]] = memref.dim %[[FILTER]], %[[C1]] : memref<2x?xf32>
 // CHECK:           %[[MASK_FLT:.*]] = vector.create_mask %[[C2]], %[[CH_DIM_FLT]] : vector<2x[4]xi1>
 /// Read the filter tensor
-// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] : memref<2x?xf32>, vector<2x[4]xf32> } : vector<2x[4]xi1> -> vector<2x[4]xf32>
+// CHECK:           %[[VEC_FLT:.*]] = vector.mask %[[MASK_FLT]] { vector.transfer_read %[[FILTER]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true]} : memref<2x?xf32>, vector<2x[4]xf32> } : vector<2x[4]xi1> -> vector<2x[4]xf32>
 
 /// Create a mask for the output tensor
 // CHECK:           %[[CH_DIM_OUT:.*]] = memref.dim %[[OUTPUT]], %[[C2]] : memref<3x2x?xf32>
 // CHECK:           %[[MASK_OUT:.*]] = vector.create_mask %[[C3]], %[[C2]], %[[CH_DIM_OUT]] : vector<3x2x[4]xi1>
 /// Read the output tensor
-// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] : memref<3x2x?xf32>, vector<3x2x[4]xf32> } : vector<3x2x[4]xi1> -> vector<3x2x[4]xf32>
+// CHECK:           %[[VEC_OUT:.*]] = vector.mask %[[MASK_OUT]] { vector.transfer_read %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : memref<3x2x?xf32>, vector<3x2x[4]xf32> } : vector<3x2x[4]xi1> -> vector<3x2x[4]xf32>
 
 /// Convolution
 // CHECK:           %[[IN_1:.*]] = vector.extract_strided_slice %[[VEC_IN]] {offsets = [0, 0, 0], sizes = [3, 2, 4], strides = [1, 1, 1]} : vector<3x4x[4]xf32> to vector<3x2x[4]xf32>
@@ -182,4 +182,4 @@ module attributes {transform.with_named_sequence} {
 // CHECK:           %[[FLT_2_B:.*]] = vector.broadcast %[[FLT_2]] : vector<[4]xf32> to vector<3x2x[4]xf32>
 // CHECK:           %[[FMA_2:.*]] = vector.fma %[[IN_2]], %[[FLT_2_B]], %[[FMA_1]] : vector<3x2x[4]xf32>
 // CHECK:           %[[OUT_INS:.*]] = vector.insert_strided_slice %[[FMA_2]], %[[VEC_OUT]] {offsets = [0, 0, 0], strides = [1, 1, 1]} : vector<3x2x[4]xf32> into vector<3x2x[4]xf32>
-// CHECK:           vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] : vector<3x2x[4]xf32>, memref<3x2x?xf32> } : vector<3x2x[4]xi1>
+// CHECK:           vector.mask %[[MASK_OUT]] { vector.transfer_write %[[OUT_INS]], %[[OUTPUT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<3x2x[4]xf32>, memref<3x2x?xf32> } : vector<3x2x[4]xi1>

Copy link
Collaborator

@c-rhodes c-rhodes left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM cheers

@banach-space
Copy link
Contributor

(which prevents some rewrites)

Could you share some examples? That would help me with some follow-up work for #96031

@MacDue
Copy link
Member Author

MacDue commented Jun 27, 2024

(which prevents some rewrites)

Could you share some examples? That would help me with some follow-up work for #96031

The case I hit was the FoldTensorSubsetIntoVectorTransferOps (in IREE), but you simply need to grep for .hasOutOfBoundsDim() to find many other examples.

@MacDue MacDue merged commit 34e34a0 into llvm:main Jun 27, 2024
10 checks passed
@MacDue MacDue deleted the conv_inbounds branch June 27, 2024 14:47
lravenclaw pushed a commit to lravenclaw/llvm-project that referenced this pull request Jul 3, 2024
…lvm#96771)

If this is not set the fact that the dynamic channel is in-bounds cannot
be inferred automatically (like it can for static sizes), which
eventually leads to it being marked as out-of-bounds (which prevents
some rewrites).
AlexisPerry pushed a commit to llvm-project-tlp/llvm-project that referenced this pull request Jul 9, 2024
…lvm#96771)

If this is not set the fact that the dynamic channel is in-bounds cannot
be inferred automatically (like it can for static sizes), which
eventually leads to it being marked as out-of-bounds (which prevents
some rewrites).
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants