-
Notifications
You must be signed in to change notification settings - Fork 14.3k
[MLIR][Vector] Generalize DropUnitDimFromElementwiseOps to non leading / trailing dimensions. #98455
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
…g / trailing dimensions. (llvm#92934) Generalizes `DropUnitDimFromElementwiseOps` to support inner unit dimensions. This change stems from improving lowering of contractionOps for Arm SME. Where we end up with inner unit dimensions on MulOp, BroadcastOp and TransposeOp, preventing the generation of outerproducts. discussed [here](https://discourse.llvm.org/t/on-improving-arm-sme-lowering-resilience-in-mlir/78543/17?u=nujaa). --------- Co-authored-by: Benjamin Maxwell <[email protected]>
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-vector Author: Hugo Trachino (nujaa) ChangesGeneralizes DropUnitDimFromElementwiseOps to support inner unit dimensions. Fix after : #97652 showed an unhandled edge case when all dimensions are one. Full diff: https://github.com/llvm/llvm-project/pull/98455.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
index da5954b70a2ec..4edc85af9ee60 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
@@ -1622,7 +1622,34 @@ struct ChainedReduction final : OpRewritePattern<vector::ReductionOp> {
}
};
-/// For vectors with either leading or trailing unit dim, replaces:
+// Scalable unit dimensions are not supported. Folding such dimensions would
+// require "shifting" the scalable flag onto some other fixed-width dim (e.g.
+// vector<[1]x4xf32> -> vector<[4]xf32>). This could be implemented in the
+// future.
+static VectorType dropNonScalableUnitDimFromType(VectorType inVecTy) {
+ auto inVecShape = inVecTy.getShape();
+ auto inVecScalableDims = inVecTy.getScalableDims();
+ SmallVector<int64_t> newShape;
+ SmallVector<bool> newScalableDims;
+ if (llvm::all_of(inVecShape, [](int64_t dim) { return dim == 1; }) &&
+ llvm::none_of(inVecScalableDims,
+ [](bool isScalable) { return isScalable; })) {
+ newShape.push_back(1);
+ newScalableDims.push_back(false);
+ } else {
+ for (auto [dim, isScalable] :
+ llvm::zip_equal(inVecShape, inVecScalableDims)) {
+ if (dim == 1 && !isScalable)
+ continue;
+
+ newShape.push_back(dim);
+ newScalableDims.push_back(isScalable);
+ }
+ }
+ return VectorType::get(newShape, inVecTy.getElementType(), newScalableDims);
+}
+
+/// For vectors with at least an unit dim, replaces:
/// elementwise(a, b)
/// with:
/// sc_a = shape_cast(a)
@@ -1634,20 +1661,16 @@ struct ChainedReduction final : OpRewritePattern<vector::ReductionOp> {
/// required to be rank > 1.
///
/// Ex:
-/// ```
/// %mul = arith.mulf %B_row, %A_row : vector<1x[4]xf32>
/// %cast = vector.shape_cast %mul : vector<1x[4]xf32> to vector<[4]xf32>
-/// ```
///
/// gets converted to:
///
-/// ```
/// %B_row_sc = vector.shape_cast %B_row : vector<1x[4]xf32> to vector<[4]xf32>
/// %A_row_sc = vector.shape_cast %A_row : vector<1x[4]xf32> to vector<[4]xf32>
/// %mul = arith.mulf %B_row_sc, %A_row_sc : vector<[4]xf32>
/// %cast_new = vector.shape_cast %mul : vector<[4]xf32> to vector<1x[4]xf32>
/// %cast = vector.shape_cast %cast_new : vector<1x[4]xf32> to vector<[4]xf32>
-/// ```
///
/// Patterns for folding shape_casts should instantly eliminate `%cast_new` and
/// `%cast`.
@@ -1667,42 +1690,29 @@ struct DropUnitDimFromElementwiseOps final
// guaranteed to have identical shapes (with some exceptions such as
// `arith.select`) and it suffices to only check one of them.
auto sourceVectorType = dyn_cast<VectorType>(op->getOperand(0).getType());
- if (!sourceVectorType)
- return failure();
- if (sourceVectorType.getRank() < 2)
+ if (!sourceVectorType || sourceVectorType.getRank() < 2)
return failure();
- bool hasTrailingDimUnitFixed =
- ((sourceVectorType.getShape().back() == 1) &&
- (!sourceVectorType.getScalableDims().back()));
- bool hasLeadingDimUnitFixed =
- ((sourceVectorType.getShape().front() == 1) &&
- (!sourceVectorType.getScalableDims().front()));
- if (!hasLeadingDimUnitFixed && !hasTrailingDimUnitFixed)
- return failure();
-
- // Drop leading/trailing unit dim by applying vector.shape_cast to all
- // operands
- int64_t dim = hasLeadingDimUnitFixed ? 0 : sourceVectorType.getRank() - 1;
-
SmallVector<Value> newOperands;
auto loc = op->getLoc();
for (auto operand : op->getOperands()) {
auto opVectorType = cast<VectorType>(operand.getType());
- VectorType newVType = VectorType::Builder(opVectorType).dropDim(dim);
+ auto newVType = dropNonScalableUnitDimFromType(opVectorType);
+ if (newVType == opVectorType)
+ return rewriter.notifyMatchFailure(op, "No unit dimension to remove.");
+
auto opSC = rewriter.create<vector::ShapeCastOp>(loc, newVType, operand);
newOperands.push_back(opSC);
}
VectorType newResultVectorType =
- VectorType::Builder(resultVectorType).dropDim(dim);
- // Create an updated elementwise Op without leading/trailing unit dim
+ dropNonScalableUnitDimFromType(resultVectorType);
+ // Create an updated elementwise Op without unit dim.
Operation *elementwiseOp =
rewriter.create(loc, op->getName().getIdentifier(), newOperands,
newResultVectorType, op->getAttrs());
- // Restore the leading/trailing unit dim by applying vector.shape_cast
- // to the result
+ // Restore the unit dim by applying vector.shape_cast to the result.
rewriter.replaceOpWithNewOp<ShapeCastOp>(op, resultVectorType,
elementwiseOp->getResult(0));
diff --git a/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir b/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
index 5fd3cbd54aa58..303f841e8a828 100644
--- a/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
+++ b/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
@@ -604,6 +604,57 @@ func.func @fold_unit_dims_entirely(%arg0 : vector<8xi32>,
// -----
+func.func @fold_inner_unit_dim(%arg0 : vector<8x1x3xf128>,
+ %arg1 : vector<1x8x3xf128>) -> vector<8x3xf128> {
+ %sc_arg1 = vector.shape_cast %arg1 : vector<1x8x3xf128> to vector<8x1x3xf128>
+ %mul = arith.mulf %arg0, %sc_arg1 : vector<8x1x3xf128>
+ %res = vector.shape_cast %mul : vector<8x1x3xf128> to vector<8x3xf128>
+ return %res : vector<8x3xf128>
+}
+
+// CHECK-LABEL: func.func @fold_inner_unit_dim(
+// CHECK-SAME: %[[VAL_0:.*]]: vector<8x1x3xf128>,
+// CHECK-SAME: %[[VAL_1:.*]]: vector<1x8x3xf128>) -> vector<8x3xf128> {
+// CHECK: %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<8x1x3xf128> to vector<8x3xf128>
+// CHECK: %[[VAL_3:.*]] = vector.shape_cast %[[VAL_1]] : vector<1x8x3xf128> to vector<8x3xf128>
+// CHECK: %[[VAL_4:.*]] = arith.mulf %[[VAL_2]], %[[VAL_3]] : vector<8x3xf128>
+// CHECK: return %[[VAL_4]] : vector<8x3xf128>
+
+// -----
+
+func.func @fold_inner_unit_dim_scalable(%arg0 : vector<8x1x[1]x3xf128>,
+ %arg1 : vector<1x8x[1]x3xf128>) -> vector<8x[1]x3xf128> {
+ %sc_arg1 = vector.shape_cast %arg1 : vector<1x8x[1]x3xf128> to vector<8x1x[1]x3xf128>
+ %mul = arith.mulf %arg0, %sc_arg1 : vector<8x1x[1]x3xf128>
+ %res = vector.shape_cast %mul : vector<8x1x[1]x3xf128> to vector<8x[1]x3xf128>
+ return %res : vector<8x[1]x3xf128>
+}
+
+// CHECK-LABEL: func.func @fold_inner_unit_dim_scalable(
+// CHECK-SAME: %[[VAL_0:.*]]: vector<8x1x[1]x3xf128>,
+// CHECK-SAME: %[[VAL_1:.*]]: vector<1x8x[1]x3xf128>) -> vector<8x[1]x3xf128> {
+// CHECK: %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<8x1x[1]x3xf128> to vector<8x[1]x3xf128>
+// CHECK: %[[VAL_3:.*]] = vector.shape_cast %[[VAL_1]] : vector<1x8x[1]x3xf128> to vector<8x[1]x3xf128>
+// CHECK: %[[VAL_4:.*]] = arith.mulf %[[VAL_2]], %[[VAL_3]] : vector<8x[1]x3xf128>
+// CHECK: return %[[VAL_4]] : vector<8x[1]x3xf128>
+
+// -----
+
+func.func @fold_all_unit_dims(%arg0: vector<1x1xf32>) -> vector<1xf32> {
+ %0 = arith.mulf %arg0, %arg0 : vector<1x1xf32>
+ %res = vector.shape_cast %0 : vector<1x1xf32> to vector<1xf32>
+ return %res : vector<1xf32>
+}
+
+// CHECK-LABEL: func.func @fold_all_unit_dims(
+// CHECK-SAME: %[[VAL_0:.*]]: vector<1x1xf32>) -> vector<1xf32>
+// CHECK: %[[VAL_1:.*]] = vector.shape_cast %[[VAL_0]] : vector<1x1xf32> to vector<1xf32>
+// CHECK: %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<1x1xf32> to vector<1xf32>
+// CHECK: %[[VAL_3:.*]] = arith.mulf %[[VAL_1]], %[[VAL_2]] : vector<1xf32>
+// CHECK: return %[[VAL_3]] : vector<1xf32>
+
+// -----
+
func.func @negative_out_of_bound_transfer_read(
%arg : memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<5x4x3x2xi8> {
%c0 = arith.constant 0 : index
|
4af5cf1
to
3909145
Compare
newShape.push_back(dim); | ||
newScalableDims.push_back(isScalable); | ||
} | ||
// All dims have been dropped, we need to return a legal shape for VectorType. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: 0-D vectors are legal, but not well supported (I think that was the issue from IREE)?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes. I saw some instances essentially with data transfer memory shape ops (extract, broadcast, ...). Do you think the solution should rather allow elementwise op to support vector ?
It was indeed an issue coming from IREE yet, it was reproduced with LLVM
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We don't need to think about IREE here. We should generate valid IRs in upstream transformations. IMO, 0-D vector is weird. I can't really tell the distinction between 0-D vector and vector<1xT>
. I'd suggest to return 1-D vector and document it in the function comment (i.e., l.1625-l.1629).
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
+1 to what @hanhanW is suggesting, thanks!
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM (I see fold_all_unit_dims()
covers the case from #92934 (comment))
// vector<[1]x4xf32> -> vector<[4]xf32>). This could be implemented in the | ||
// future. | ||
// Helper function dropping unit non-scalable dimension from a VectorType | ||
// keeping at least 1 dimension. Scalable unit dimensions are not dropped. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[nit]
// keeping at least 1 dimension. Scalable unit dimensions are not dropped. | |
// keeping at least 1 dimension (to avoid generating 0-D vectors). Scalable unit dimensions are not dropped. |
Tiny bit of extra context could save ourselves from scratching our heads in 6 months :)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
thanks!
…g / trailing dimensions. (#98455) Summary: Generalizes DropUnitDimFromElementwiseOps to support inner unit dimensions. This change stems from improving lowering of contractionOps for Arm SME. Where we end up with inner unit dimensions on MulOp, BroadcastOp and TransposeOp, preventing the generation of outerproducts. discussed [here](https://discourse.llvm.org/t/on-improving-arm-sme-lowering-resilience-in-mlir/78543/17?u=nujaa). Fix after : #97652 showed an unhandled edge case when all dimensions are one. The generated target VectorType would be `vector<f32>` which is apparently not supported by the mulf. In case all dimensions are dropped, the target vectorType is vector<1xf32> --------- Co-authored-by: Benjamin Maxwell <[email protected]> Test Plan: Reviewers: Subscribers: Tasks: Tags: Differential Revision: https://phabricator.intern.facebook.com/D60251689
Generalizes DropUnitDimFromElementwiseOps to support inner unit dimensions.
This change stems from improving lowering of contractionOps for Arm SME. Where we end up with inner unit dimensions on MulOp, BroadcastOp and TransposeOp, preventing the generation of outerproducts.
discussed here.
Fix after : #97652 showed an unhandled edge case when all dimensions are one. The generated target VectorType would be
vector<f32>
which is apparently not supported by the mulf.In case all dimensions are dropped, the target vectorType is vector<1xf32>