🤖 Built by Markov
When AI changes everything, you start from scratch.
Markov specializes in cutting-edge AI solutions and automation. From neural ledgers to MCP servers,
we're building the tools that power the next generation of AI-driven applications.
💼 We're always hiring exceptional engineers! Join us in shaping the future of AI.
A Model Completion Protocol (MCP) server for Databricks that provides access to Databricks functionality via the MCP protocol. This allows LLM-powered tools to interact with Databricks clusters, jobs, notebooks, and more.
Version 0.3.1 - Latest release with issue #9 fix and enhanced MCP client compatibility.
Click this link to install instantly:
cursor://anysphere.cursor-deeplink/mcp/install?name=databricks-mcp&config=eyJjb21tYW5kIjoidXZ4IiwiYXJncyI6WyJkYXRhYnJpY2tzLW1jcC1zZXJ2ZXIiXSwiZW52Ijp7IkRBVEFCUklDS1NfSE9TVCI6IiR7REFUQUJSSUNLU19IT1NUfSIsIkRBVEFCUklDS1NfVE9LRU4iOiIke0RBVEFCUklDS1NfVE9LRU59IiwiREFUQUJSSUNLU19XQVJFSE9VU0VfSUQiOiIke0RBVEFCUklDS1NfV0FSRUhPVVNFX0lEfSJ9fQ==
Or copy and paste this deeplink:
cursor://anysphere.cursor-deeplink/mcp/install?name=databricks-mcp&config=eyJjb21tYW5kIjoidXZ4IiwiYXJncyI6WyJkYXRhYnJpY2tzLW1jcC1zZXJ2ZXIiXSwiZW52Ijp7IkRBVEFCUklDS1NfSE9TVCI6IiR7REFUQUJSSUNLU19IT1NUfSIsIkRBVEFCUklDS1NfVE9LRU4iOiIke0RBVEFCUklDS1NfVE9LRU59IiwiREFUQUJSSUNLU19XQVJFSE9VU0VfSUQiOiIke0RBVEFCUklDS1NfV0FSRUhPVVNFX0lEfSJ9fQ==
→ Install Databricks MCP in Cursor ←
This project is maintained by Olivier Debeuf De Rijcker [email protected].
Credit for the initial version goes to @JustTryAI.
- MCP Protocol Support: Implements the MCP protocol to allow LLMs to interact with Databricks
- Databricks API Integration: Provides access to Databricks REST API functionality
- Tool Registration: Exposes Databricks functionality as MCP tools
- Async Support: Built with asyncio for efficient operation
The Databricks MCP Server exposes the following tools:
- list_clusters: List all Databricks clusters
- create_cluster: Create a new Databricks cluster
- terminate_cluster: Terminate a Databricks cluster
- get_cluster: Get information about a specific Databricks cluster
- start_cluster: Start a terminated Databricks cluster
- list_jobs: List all Databricks jobs
- run_job: Run a Databricks job
- run_notebook: Submit and wait for a one-time notebook run
- create_job: Create a new Databricks job
- delete_job: Delete a Databricks job
- get_run_status: Get status information for a job run
- list_job_runs: List recent runs for a job
- cancel_run: Cancel a running job
- list_notebooks: List notebooks in a workspace directory
- export_notebook: Export a notebook from the workspace
- import_notebook: Import a notebook into the workspace
- delete_workspace_object: Delete a notebook or directory
- get_workspace_file_content: Retrieve content of any workspace file (JSON, notebooks, scripts, etc.)
- get_workspace_file_info: Get metadata about workspace files
- list_files: List files and directories in a DBFS path
- dbfs_put: Upload a small file to DBFS
- dbfs_delete: Delete a DBFS file or directory
- install_library: Install libraries on a cluster
- uninstall_library: Remove libraries from a cluster
- list_cluster_libraries: Check installed libraries on a cluster
- create_repo: Clone a Git repository
- update_repo: Update an existing repo
- list_repos: List repos in the workspace
- pull_repo: Pull the latest commit for a Databricks repo
- list_catalogs: List catalogs
- create_catalog: Create a catalog
- list_schemas: List schemas in a catalog
- create_schema: Create a schema
- list_tables: List tables in a schema
- create_table: Execute a CREATE TABLE statement
- get_table_lineage: Fetch lineage information for a table
- sync_repo_and_run_notebook: Pull a repo and execute a notebook in one call
- execute_sql: Execute a SQL statement (warehouse_id optional if DATABRICKS_WAREHOUSE_ID env var is set)
New Features - Repo Sync & Notebook Execution:
- ✅ Repository Management: Pull latest commits from Databricks repos with
pull_repo
tool - ✅ One-time Notebook Execution: Submit and wait for notebook runs with
run_notebook
tool - ✅ Composite Operations: Combined repo sync + notebook execution with
sync_repo_and_run_notebook
tool - ✅ Enhanced Job Management: Extended job APIs with submit, status checking, and run management
- ✅ Comprehensive Testing: Full test coverage for all new functionality
Bug Fixes:
- ✅ Issue #9 Fixed: Resolved "Missing required parameter 'params'" error in Cursor and other MCP clients
- ✅ Parameter Handling: All MCP tools now correctly handle both nested and flat parameter structures
- ✅ Cursor Compatibility: Full compatibility with Cursor's MCP implementation
Previous Updates:
- v0.2.1: Enhanced Codespaces support, documentation improvements, publishing process streamlining
- v0.2.0: Major package refactoring from
src/
todatabricks_mcp/
structure
Backwards Compatibility: All existing MCP tools continue to work unchanged. New features extend functionality without breaking changes.
Use the link above to install with one click:
→ Install Databricks MCP in Cursor ←
This will automatically install the MCP server using uvx
and configure it in Cursor. You'll need to set these environment variables:
DATABRICKS_HOST
- Your Databricks workspace URLDATABRICKS_TOKEN
- Your Databricks personal access tokenDATABRICKS_WAREHOUSE_ID
- (Optional) Your default SQL warehouse ID
- Python 3.10 or higher
uv
package manager (recommended for MCP servers)
-
Install
uv
if you don't have it already:# MacOS/Linux curl -LsSf https://astral.sh/uv/install.sh | sh # Windows (in PowerShell) irm https://astral.sh/uv/install.ps1 | iex
Restart your terminal after installation.
-
Clone the repository:
git clone https://github.com/markov-kernel/databricks-mcp.git cd databricks-mcp
-
Run the setup script:
# Linux/Mac ./scripts/setup.sh # Windows (PowerShell) .\scripts\setup.ps1
The setup script will:
- Install
uv
if not already installed - Create a virtual environment
- Install all project dependencies
- Verify the installation works
Alternative manual setup:
# Create and activate virtual environment uv venv # On Windows .\.venv\Scripts\activate # On Linux/Mac source .venv/bin/activate # Install dependencies in development mode uv pip install -e . # Install development dependencies uv pip install -e ".[dev]"
- Install
-
Set up environment variables:
# Required variables # Windows set DATABRICKS_HOST=https://your-databricks-instance.azuredatabricks.net set DATABRICKS_TOKEN=your-personal-access-token # Linux/Mac export DATABRICKS_HOST=https://your-databricks-instance.azuredatabricks.net export DATABRICKS_TOKEN=your-personal-access-token # Optional: Set default SQL warehouse (makes warehouse_id optional in execute_sql) export DATABRICKS_WAREHOUSE_ID=sql_warehouse_12345
You can also create an
.env
file based on the.env.example
template.
To start the MCP server directly for testing or development, run:
# Activate your virtual environment if not already active
source .venv/bin/activate
# Run the start script (handles finding env vars from .env if needed)
./scripts/start_mcp_server.sh
This is useful for seeing direct output and logs.
To use this server with AI clients like Cursor or Claude CLI, you need to register it.
-
Open your global MCP configuration file located at
~/.cursor/mcp.json
(create it if it doesn't exist). -
Add the following entry within the
mcpServers
object, replacing placeholders with your actual values and ensuring the path tostart_mcp_server.sh
is correct:{ "mcpServers": { // ... other servers ... "databricks-mcp-local": { "command": "/absolute/path/to/your/project/databricks-mcp-server/start_mcp_server.sh", "args": [], "env": { "DATABRICKS_HOST": "https://your-databricks-instance.azuredatabricks.net", "DATABRICKS_TOKEN": "dapiXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "DATABRICKS_WAREHOUSE_ID": "sql_warehouse_12345", "RUNNING_VIA_CURSOR_MCP": "true" } } // ... other servers ... } }
-
Important: Replace
/absolute/path/to/your/project/databricks-mcp-server/
with the actual absolute path to this project directory on your machine. -
Replace the
DATABRICKS_HOST
andDATABRICKS_TOKEN
values with your credentials. -
Save the file and restart Cursor.
-
You can now invoke tools using
databricks-mcp-local:<tool_name>
(e.g.,databricks-mcp-local:list_jobs
).
-
Use the
claude mcp add
command to register the server. Provide your credentials using the-e
flag for environment variables and point the command to thestart_mcp_server.sh
script using--
followed by the absolute path:claude mcp add databricks-mcp-local \ -s user \ -e DATABRICKS_HOST="https://your-databricks-instance.azuredatabricks.net" \ -e DATABRICKS_TOKEN="dapiXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" \ -e DATABRICKS_WAREHOUSE_ID="sql_warehouse_12345" \ -- /absolute/path/to/your/project/databricks-mcp-server/start_mcp_server.sh
-
Important: Replace
/absolute/path/to/your/project/databricks-mcp-server/
with the actual absolute path to this project directory on your machine. -
Replace the
DATABRICKS_HOST
andDATABRICKS_TOKEN
values with your credentials. -
You can now invoke tools using
databricks-mcp-local:<tool_name>
in your Claude interactions.
The repository includes utility scripts to quickly view Databricks resources:
# View all clusters
uv run scripts/show_clusters.py
# View all notebooks
uv run scripts/show_notebooks.py
# With DATABRICKS_WAREHOUSE_ID set, warehouse_id is optional
await session.call_tool("execute_sql", {
"statement": "SELECT * FROM my_table LIMIT 10"
})
# You can still override the default warehouse
await session.call_tool("execute_sql", {
"statement": "SELECT * FROM my_table LIMIT 10",
"warehouse_id": "sql_warehouse_specific"
})
# Get JSON file content from workspace
await session.call_tool("get_workspace_file_content", {
"workspace_path": "/Users/[email protected]/config/settings.json"
})
# Get notebook content in Jupyter format
await session.call_tool("get_workspace_file_content", {
"workspace_path": "/Users/[email protected]/my_notebook",
"format": "JUPYTER"
})
# Get file metadata without downloading content
await session.call_tool("get_workspace_file_info", {
"workspace_path": "/Users/[email protected]/large_file.py"
})
await session.call_tool("sync_repo_and_run_notebook", {
"repo_id": 123,
"notebook_path": "/Repos/user/project/run_me"
})
job_conf = {
"name": "Nightly ETL",
"tasks": [
{
"task_key": "etl",
"notebook_task": {"notebook_path": "/Repos/me/etl.py"},
"existing_cluster_id": "abc-123"
}
]
}
await session.call_tool("create_job", job_conf)
databricks-mcp/
├── databricks_mcp/ # Main package (renamed from src/)
│ ├── __init__.py # Package initialization
│ ├── __main__.py # Main entry point for the package
│ ├── main.py # Entry point for the MCP server
│ ├── api/ # Databricks API clients
│ │ ├── clusters.py # Cluster management
│ │ ├── jobs.py # Job management
│ │ ├── notebooks.py # Notebook operations
│ │ ├── sql.py # SQL execution
│ │ └── dbfs.py # DBFS operations
│ ├── core/ # Core functionality
│ │ ├── config.py # Configuration management
│ │ ├── auth.py # Authentication
│ │ └── utils.py # Utilities
│ ├── server/ # Server implementation
│ │ ├── __main__.py # Server entry point
│ │ ├── databricks_mcp_server.py # Main MCP server
│ │ └── app.py # FastAPI app for tests
│ └── cli/ # Command-line interface
│ └── commands.py # CLI commands
├── tests/ # Test directory
│ ├── test_clusters.py # Cluster tests
│ ├── test_mcp_server.py # Server tests
│ └── test_*.py # Other test files
├── scripts/ # Helper scripts (organized)
│ ├── start_mcp_server.ps1 # Server startup script (Windows)
│ ├── start_mcp_server.sh # Server startup script (Unix)
│ ├── run_tests.ps1 # Test runner script (Windows)
│ ├── run_tests.sh # Test runner script (Unix)
│ ├── setup.ps1 # Setup script (Windows)
│ ├── setup.sh # Setup script (Unix)
│ ├── show_clusters.py # Script to show clusters
│ ├── show_notebooks.py # Script to show notebooks
│ ├── setup_codespaces.sh # Codespaces setup
│ └── test_setup_local.sh # Local test setup
├── examples/ # Example usage
│ ├── direct_usage.py # Direct usage examples
│ └── mcp_client_usage.py # MCP client examples
├── docs/ # Documentation (organized)
│ ├── AGENTS.md # Agent documentation
│ ├── project_structure.md # Detailed structure docs
│ ├── new_features.md # Feature documentation
│ └── phase1.md # Development phases
├── .gitignore # Git ignore rules
├── .cursor.json # Cursor configuration
├── pyproject.toml # Package configuration
├── uv.lock # Dependency lock file
└── README.md # This file
See docs/project_structure.md
for a more detailed view of the project structure.
- Python code follows PEP 8 style guide with a maximum line length of 100 characters
- Use 4 spaces for indentation (no tabs)
- Use double quotes for strings
- All classes, methods, and functions should have Google-style docstrings
- Type hints are required for all code except tests
The project uses the following linting tools:
# Run all linters
uv run pylint databricks_mcp/ tests/
uv run flake8 databricks_mcp/ tests/
uv run mypy databricks_mcp/
The project uses pytest for testing. To run the tests:
# Run all tests with our convenient script
.\scripts\run_tests.ps1
# Run with coverage report
.\scripts\run_tests.ps1 -Coverage
# Run specific tests with verbose output
.\scripts\run_tests.ps1 -Verbose -Coverage tests/test_clusters.py
You can also run the tests directly with pytest:
# Run all tests
uv run pytest tests/
# Run with coverage report
uv run pytest --cov=databricks_mcp tests/ --cov-report=term-missing
A minimum code coverage of 80% is the goal for the project.
- API documentation is generated using Sphinx and can be found in the
docs/api
directory - All code includes Google-style docstrings
- See the
examples/
directory for usage examples
Check the examples/
directory for usage examples. To run examples:
# Run example scripts with uv
uv run examples/direct_usage.py
uv run examples/mcp_client_usage.py
Contributions are welcome! Please feel free to submit a Pull Request.
- Ensure your code follows the project's coding standards
- Add tests for any new functionality
- Update documentation as necessary
- Verify all tests pass before submitting
This project is licensed under the MIT License - see the LICENSE file for details.
A Model Completion Protocol (MCP) server for interacting with Databricks services. Maintained by markov.bot.