Skip to content

Commit 310511d

Browse files
Refactor examples
1 parent 16301d6 commit 310511d

File tree

1 file changed

+19
-18
lines changed

1 file changed

+19
-18
lines changed

pandas/core/frame.py

Lines changed: 19 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -5178,10 +5178,17 @@ def stack(self, level=-1, dropna=True):
51785178
>>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]],
51795179
... index=['one', 'two'],
51805180
... columns=['a', 'b'])
5181-
>>> multicol = pd.MultiIndex.from_tuples([('X', 'a'), ('X', 'b')])
5182-
>>> df_multi_level_cols = pd.DataFrame([[0, 1], [2, 3]],
5181+
>>> multicol1 = pd.MultiIndex.from_tuples([('X', 'a'), ('X', 'b')])
5182+
>>> df_multi_level_cols1 = pd.DataFrame([[0, 1], [2, 3]],
51835183
... index=['one', 'two'],
5184-
... columns=multicol)
5184+
... columns=multicol1)
5185+
>>> multicol2 = pd.MultiIndex.from_tuples([('X', 'a'), ('Y', 'b')])
5186+
>>> df_multi_level_cols2 = pd.DataFrame([[0.0, 1.0], [2.0, 3.0]],
5187+
... index=['one', 'two'],
5188+
... columns=multicol2)
5189+
>>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]],
5190+
... index=['one', 'two'],
5191+
... columns=multicol2)
51855192
51865193
Stacking a dataframe with a single level column axis returns a Series:
51875194
@@ -5198,31 +5205,27 @@ def stack(self, level=-1, dropna=True):
51985205
51995206
Stacking a dataframe with a multi-level column axis with no missing values:
52005207
5201-
>>> df_multi_level_cols
5208+
>>> df_multi_level_cols1
52025209
X
52035210
a b
52045211
one 0 1
52055212
two 2 3
5206-
>>> df_multi_level_cols.stack()
5213+
>>> df_multi_level_cols1.stack()
52075214
X
52085215
one a 0
52095216
b 1
52105217
two a 2
52115218
b 3
52125219
5213-
Stacking a dataframe with a multi-level column axis with no missing values
5220+
Stacking a dataframe with a multi-level column axis with no missing values.
5221+
By default the missing values are filled with NaNs:
52145222
5215-
>>> multicol = pd.MultiIndex.from_tuples([('X', 'a'), ('Y', 'b')])
5216-
>>> s = pd.DataFrame([[0.0, 1.0], [2.0, 3.0]], index=['one', 'two'], columns=multicol)
5217-
>>> s
5223+
>>> df_multi_level_cols2
52185224
X Y
52195225
a b
52205226
one 0.0 1.0
52215227
two 2.0 3.0
5222-
5223-
By default the missing values are filled with NaNs:
5224-
5225-
>>> s.stack()
5228+
>>> df_multi_level_cols2.stack()
52265229
X Y
52275230
one a 0.0 NaN
52285231
b NaN 1.0
@@ -5231,22 +5234,20 @@ def stack(self, level=-1, dropna=True):
52315234
52325235
Rows where all values are missing are dropped by default:
52335236
5234-
>>> multicol = pd.MultiIndex.from_tuples([('X', 'a'), ('Y', 'b')])
5235-
>>> s = pd.DataFrame([[None, 1.0], [2.0, 3.0]], index=['one', 'two'], columns=multicol)
5236-
>>> s
5237+
>>> df_multi_level_cols3
52375238
X Y
52385239
a b
52395240
one NaN 1.0
52405241
two 2.0 3.0
52415242
5242-
>>> s.stack(dropna=False)
5243+
>>> df_multi_level_cols3.stack(dropna=False)
52435244
X Y
52445245
one a NaN NaN
52455246
b NaN 1.0
52465247
two a 2.0 NaN
52475248
b NaN 3.0
52485249
5249-
>>> s.stack(dropna=True)
5250+
>>> df_multi_level_cols3.stack(dropna=True)
52505251
X Y
52515252
one b NaN 1.0
52525253
two a 2.0 NaN

0 commit comments

Comments
 (0)