You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When using pandas' infer_dtype on an object array consisting out of floats with embedded pd.NA, the result will be mixed-integer-float tough skipna is True as a default.
The same test for embedded np.nan returns floating.
In case of other types, like integer or strings, the function does not produce a false / different output w.r.t. the na-type.
Context, I am maintaining a small project which assures integers in columns to stay integers - a common known issue. I you know of a well established extension for this purpose, feel free to point me towards it.
Expected Behavior
>>> infer_dtype(pd.Series([1.,2.,.3,pd.NA], dtype=object)) should return floating
Installed Versions
INSTALLED VERSIONS
commit : 2cc3762
python : 3.13.3
python-bits : 64
OS : Linux
OS-release : 4.18.0-553.51.1.el8_10.x86_64
Version : #1 SMP Fri Apr 25 00:55:37 EDT 2025
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
Uh oh!
There was an error while loading. Please reload this page.
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
Dear pandas-folks,
This was checked for pandas V 2.3.0 and 2.2.X
When using pandas'
infer_dtype
on an object array consisting out of floats with embeddedpd.NA
, the result will bemixed-integer-float
toughskipna
isTrue
as a default.The same test for embedded
np.nan
returnsfloating
.In case of other types, like integer or strings, the function does not produce a false / different output w.r.t. the na-type.
Context, I am maintaining a small project which assures integers in columns to stay integers - a common known issue. I you know of a well established extension for this purpose, feel free to point me towards it.
Expected Behavior
>>> infer_dtype(pd.Series([1.,2.,.3,pd.NA], dtype=object))
should returnfloating
Installed Versions
INSTALLED VERSIONS
commit : 2cc3762
python : 3.13.3
python-bits : 64
OS : Linux
OS-release : 4.18.0-553.51.1.el8_10.x86_64
Version : #1 SMP Fri Apr 25 00:55:37 EDT 2025
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.3.0
numpy : 2.2.6
pytz : 2025.2
dateutil : 2.9.0.post0
pip : 25.1.1
Cython : None
sphinx : None
IPython : 9.2.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 20.0.0
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: