Skip to content

DOC: update the DataFrame.update() docstring #20201

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 15 commits into from
Mar 13, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 38 additions & 10 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -4321,21 +4321,44 @@ def combiner(x, y, needs_i8_conversion=False):
def update(self, other, join='left', overwrite=True, filter_func=None,
raise_conflict=False):
"""
Modify DataFrame in place using non-NA values from passed
DataFrame. Aligns on indices
Modify in place using non-NA values from another DataFrame.

Aligns on indices. There is no return value.

Parameters
----------
other : DataFrame, or object coercible into a DataFrame
Should have at least one matching index/column label
with the original DataFrame. If a Series is passed,
its name attribute must be set, and that will be
used as the column name to align with the original DataFrame.
join : {'left'}, default 'left'
overwrite : boolean, default True
If True then overwrite values for common keys in the calling frame
filter_func : callable(1d-array) -> 1d-array<boolean>, default None
Only left join is implemented, keeping the index and columns of the
original object.
overwrite : bool, default True
How to handle non-NA values for overlapping keys:

* True: overwrite original DataFrame's values
with values from `other`.
* False: only update values that are NA in
the original DataFrame.

filter_func : callable(1d-array) -> boolean 1d-array, optional
Can choose to replace values other than NA. Return True for values
that should be updated
raise_conflict : boolean
If True, will raise an error if the DataFrame and other both
contain data in the same place.
that should be updated.
raise_conflict : bool, default False
If True, will raise a ValueError if the DataFrame and `other`
both contain non-NA data in the same place.

Raises
------
ValueError
When `raise_conflict` is True and there's overlapping non-NA data.

See Also
--------
dict.update : Similar method for dictionaries.
DataFrame.merge : For column(s)-on-columns(s) operations.

Examples
--------
Expand All @@ -4350,6 +4373,9 @@ def update(self, other, join='left', overwrite=True, filter_func=None,
1 2 5
2 3 6

The DataFrame's length does not increase as a result of the update,
only values at matching index/column labels are updated.

>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']})
Expand All @@ -4360,6 +4386,8 @@ def update(self, other, join='left', overwrite=True, filter_func=None,
1 b e
2 c f

For Series, it's name attribute must be set.

>>> df = pd.DataFrame({'A': ['a', 'b', 'c'],
... 'B': ['x', 'y', 'z']})
>>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2])
Expand All @@ -4379,7 +4407,7 @@ def update(self, other, join='left', overwrite=True, filter_func=None,
1 b d
2 c e

If ``other`` contains NaNs the corresponding values are not updated
If `other` contains NaNs the corresponding values are not updated
in the original dataframe.

>>> df = pd.DataFrame({'A': [1, 2, 3],
Expand Down