Skip to content

CLN: remove is_datetimelike #29452

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 7, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
is_complex_dtype,
is_datetime64_any_dtype,
is_datetime64_ns_dtype,
is_datetimelike,
is_extension_array_dtype,
is_float_dtype,
is_integer,
Expand Down Expand Up @@ -834,7 +833,7 @@ def mode(values, dropna: bool = True) -> ABCSeries:
return Series(values.values.mode(dropna=dropna), name=values.name)
return values.mode(dropna=dropna)

if dropna and is_datetimelike(values):
if dropna and needs_i8_conversion(values.dtype):
mask = values.isnull()
values = values[~mask]

Expand Down
4 changes: 2 additions & 2 deletions pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@
ensure_platform_int,
is_categorical_dtype,
is_datetime64_dtype,
is_datetimelike,
is_dict_like,
is_dtype_equal,
is_extension_array_dtype,
Expand All @@ -37,6 +36,7 @@
is_scalar,
is_sequence,
is_timedelta64_dtype,
needs_i8_conversion,
)
from pandas.core.dtypes.dtypes import CategoricalDtype
from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries
Expand Down Expand Up @@ -1533,7 +1533,7 @@ def get_values(self):

def _internal_get_values(self):
# if we are a datetime and period index, return Index to keep metadata
if is_datetimelike(self.categories):
if needs_i8_conversion(self.categories):
return self.categories.take(self._codes, fill_value=np.nan)
elif is_integer_dtype(self.categories) and -1 in self._codes:
return self.categories.astype("object").take(self._codes, fill_value=np.nan)
Expand Down
5 changes: 2 additions & 3 deletions pandas/core/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@
is_categorical_dtype,
is_datetime64_ns_dtype,
is_datetime64tz_dtype,
is_datetimelike,
is_extension_array_dtype,
is_extension_type,
is_list_like,
Expand Down Expand Up @@ -1172,7 +1171,7 @@ def tolist(self):
--------
numpy.ndarray.tolist
"""
if is_datetimelike(self._values):
if self.dtype.kind in ["m", "M"]:
return [com.maybe_box_datetimelike(x) for x in self._values]
elif is_extension_array_dtype(self._values):
return list(self._values)
Expand All @@ -1194,7 +1193,7 @@ def __iter__(self):
iterator
"""
# We are explicitly making element iterators.
if is_datetimelike(self._values):
if self.dtype.kind in ["m", "M"]:
return map(com.maybe_box_datetimelike, self._values)
elif is_extension_array_dtype(self._values):
return iter(self._values)
Expand Down
3 changes: 1 addition & 2 deletions pandas/core/dtypes/cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,6 @@
is_datetime64_ns_dtype,
is_datetime64tz_dtype,
is_datetime_or_timedelta_dtype,
is_datetimelike,
is_dtype_equal,
is_extension_array_dtype,
is_extension_type,
Expand Down Expand Up @@ -274,7 +273,7 @@ def maybe_upcast_putmask(result: np.ndarray, mask: np.ndarray, other):
# in np.place:
# NaN -> NaT
# integer or integer array -> date-like array
if is_datetimelike(result.dtype):
if result.dtype.kind in ["m", "M"]:
if is_scalar(other):
if isna(other):
other = result.dtype.type("nat")
Expand Down
53 changes: 2 additions & 51 deletions pandas/core/dtypes/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -799,54 +799,6 @@ def is_datetime_arraylike(arr):
return getattr(arr, "inferred_type", None) == "datetime"


def is_datetimelike(arr):
"""
Check whether an array-like is a datetime-like array-like.

Acceptable datetime-like objects are (but not limited to) datetime
indices, periodic indices, and timedelta indices.

Parameters
----------
arr : array-like
The array-like to check.

Returns
-------
boolean
Whether or not the array-like is a datetime-like array-like.

Examples
--------
>>> is_datetimelike([1, 2, 3])
False
>>> is_datetimelike(pd.Index([1, 2, 3]))
False
>>> is_datetimelike(pd.DatetimeIndex([1, 2, 3]))
True
>>> is_datetimelike(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
True
>>> is_datetimelike(pd.PeriodIndex([], freq="A"))
True
>>> is_datetimelike(np.array([], dtype=np.datetime64))
True
>>> is_datetimelike(pd.Series([], dtype="timedelta64[ns]"))
True
>>>
>>> dtype = DatetimeTZDtype("ns", tz="US/Eastern")
>>> s = pd.Series([], dtype=dtype)
>>> is_datetimelike(s)
True
"""

return (
is_datetime64_dtype(arr)
or is_datetime64tz_dtype(arr)
or is_timedelta64_dtype(arr)
or isinstance(arr, ABCPeriodIndex)
)


def is_dtype_equal(source, target):
"""
Check if two dtypes are equal.
Expand Down Expand Up @@ -1446,9 +1398,8 @@ def is_numeric(x):
"""
return is_integer_dtype(x) or is_float_dtype(x)

is_datetimelike = needs_i8_conversion
return (is_datetimelike(a) and is_numeric(b)) or (
is_datetimelike(b) and is_numeric(a)
return (needs_i8_conversion(a) and is_numeric(b)) or (
needs_i8_conversion(b) and is_numeric(a)
)


Expand Down
3 changes: 1 addition & 2 deletions pandas/core/dtypes/missing.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@
is_complex_dtype,
is_datetime64_dtype,
is_datetime64tz_dtype,
is_datetimelike,
is_datetimelike_v_numeric,
is_dtype_equal,
is_extension_array_dtype,
Expand Down Expand Up @@ -494,7 +493,7 @@ def _infer_fill_value(val):
if not is_list_like(val):
val = [val]
val = np.array(val, copy=False)
if is_datetimelike(val):
if needs_i8_conversion(val):
return np.array("NaT", dtype=val.dtype)
elif is_object_dtype(val.dtype):
dtype = lib.infer_dtype(ensure_object(val), skipna=False)
Expand Down
4 changes: 2 additions & 2 deletions pandas/core/groupby/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,14 +40,14 @@
ensure_int64,
ensure_platform_int,
is_bool,
is_datetimelike,
is_dict_like,
is_integer_dtype,
is_interval_dtype,
is_list_like,
is_numeric_dtype,
is_object_dtype,
is_scalar,
needs_i8_conversion,
)
from pandas.core.dtypes.missing import _isna_ndarraylike, isna, notna

Expand Down Expand Up @@ -1287,7 +1287,7 @@ def first_not_none(values):
# if we have date/time like in the original, then coerce dates
# as we are stacking can easily have object dtypes here
so = self._selected_obj
if so.ndim == 2 and so.dtypes.apply(is_datetimelike).any():
if so.ndim == 2 and so.dtypes.apply(needs_i8_conversion).any():
result = _recast_datetimelike_result(result)
else:
result = result._convert(datetime=True)
Expand Down
7 changes: 3 additions & 4 deletions pandas/core/reshape/merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@
is_bool_dtype,
is_categorical_dtype,
is_datetime64tz_dtype,
is_datetimelike,
is_dtype_equal,
is_extension_array_dtype,
is_float_dtype,
Expand Down Expand Up @@ -1120,9 +1119,9 @@ def _maybe_coerce_merge_keys(self):
raise ValueError(msg)

# datetimelikes must match exactly
elif is_datetimelike(lk) and not is_datetimelike(rk):
elif needs_i8_conversion(lk) and not needs_i8_conversion(rk):
raise ValueError(msg)
elif not is_datetimelike(lk) and is_datetimelike(rk):
elif not needs_i8_conversion(lk) and needs_i8_conversion(rk):
raise ValueError(msg)
elif is_datetime64tz_dtype(lk) and not is_datetime64tz_dtype(rk):
raise ValueError(msg)
Expand Down Expand Up @@ -1637,7 +1636,7 @@ def _get_merge_keys(self):
)
)

if is_datetimelike(lt):
if needs_i8_conversion(lt):
if not isinstance(self.tolerance, datetime.timedelta):
raise MergeError(msg)
if self.tolerance < Timedelta(0):
Expand Down
3 changes: 1 addition & 2 deletions pandas/core/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@
is_categorical,
is_categorical_dtype,
is_datetime64_dtype,
is_datetimelike,
is_dict_like,
is_extension_array_dtype,
is_extension_type,
Expand Down Expand Up @@ -2886,7 +2885,7 @@ def combine_first(self, other):
new_index = self.index.union(other.index)
this = self.reindex(new_index, copy=False)
other = other.reindex(new_index, copy=False)
if is_datetimelike(this) and not is_datetimelike(other):
if this.dtype.kind == "M" and other.dtype.kind != "M":
other = to_datetime(other)

return this.where(notna(this), other)
Expand Down
15 changes: 0 additions & 15 deletions pandas/tests/dtypes/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -309,21 +309,6 @@ def test_is_datetime_arraylike():
assert com.is_datetime_arraylike(pd.DatetimeIndex([1, 2, 3]))


def test_is_datetimelike():
assert not com.is_datetimelike([1, 2, 3])
assert not com.is_datetimelike(pd.Index([1, 2, 3]))

assert com.is_datetimelike(pd.DatetimeIndex([1, 2, 3]))
assert com.is_datetimelike(pd.PeriodIndex([], freq="A"))
assert com.is_datetimelike(np.array([], dtype=np.datetime64))
assert com.is_datetimelike(pd.Series([], dtype="timedelta64[ns]"))
assert com.is_datetimelike(pd.DatetimeIndex(["2000"], tz="US/Eastern"))

dtype = DatetimeTZDtype("ns", tz="US/Eastern")
s = pd.Series([], dtype=dtype)
assert com.is_datetimelike(s)


integer_dtypes = [] # type: List


Expand Down