Skip to content

CLN: Window aggregation typing #40119

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 1, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 34 additions & 31 deletions pandas/_libs/window/aggregations.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -116,9 +116,10 @@ cdef inline void remove_sum(float64_t val, int64_t *nobs, float64_t *sum_x,
def roll_sum(const float64_t[:] values, ndarray[int64_t] start,
ndarray[int64_t] end, int64_t minp):
cdef:
Py_ssize_t i, j
float64_t sum_x = 0, compensation_add = 0, compensation_remove = 0
int64_t s, e
int64_t nobs = 0, i, j, N = len(values)
int64_t nobs = 0, N = len(values)
ndarray[float64_t] output
bint is_monotonic_increasing_bounds

Expand Down Expand Up @@ -493,12 +494,13 @@ cdef inline void remove_skew(float64_t val, int64_t *nobs,
def roll_skew(ndarray[float64_t] values, ndarray[int64_t] start,
ndarray[int64_t] end, int64_t minp):
cdef:
Py_ssize_t i, j
float64_t val, prev, min_val, mean_val, sum_val = 0
float64_t compensation_xxx_add = 0, compensation_xxx_remove = 0
float64_t compensation_xx_add = 0, compensation_xx_remove = 0
float64_t compensation_x_add = 0, compensation_x_remove = 0
float64_t x = 0, xx = 0, xxx = 0
int64_t nobs = 0, i, j, N = len(values), nobs_mean = 0
int64_t nobs = 0, N = len(values), nobs_mean = 0
int64_t s, e
ndarray[float64_t] output, mean_array, values_copy
bint is_monotonic_increasing_bounds
Expand Down Expand Up @@ -674,13 +676,14 @@ cdef inline void remove_kurt(float64_t val, int64_t *nobs,
def roll_kurt(ndarray[float64_t] values, ndarray[int64_t] start,
ndarray[int64_t] end, int64_t minp):
cdef:
Py_ssize_t i, j
float64_t val, prev, mean_val, min_val, sum_val = 0
float64_t compensation_xxxx_add = 0, compensation_xxxx_remove = 0
float64_t compensation_xxx_remove = 0, compensation_xxx_add = 0
float64_t compensation_xx_remove = 0, compensation_xx_add = 0
float64_t compensation_x_remove = 0, compensation_x_add = 0
float64_t x = 0, xx = 0, xxx = 0, xxxx = 0
int64_t nobs = 0, i, j, s, e, N = len(values), nobs_mean = 0
int64_t nobs = 0, s, e, N = len(values), nobs_mean = 0
ndarray[float64_t] output, values_copy
bint is_monotonic_increasing_bounds

Expand Down Expand Up @@ -754,15 +757,13 @@ def roll_kurt(ndarray[float64_t] values, ndarray[int64_t] start,
def roll_median_c(const float64_t[:] values, ndarray[int64_t] start,
ndarray[int64_t] end, int64_t minp):
cdef:
float64_t val, res, prev
bint err = False
int ret = 0
skiplist_t *sl
Py_ssize_t i, j
bint err = False, is_monotonic_increasing_bounds
int midpoint, ret = 0
int64_t nobs = 0, N = len(values), s, e, win
int midpoint
float64_t val, res, prev
skiplist_t *sl
ndarray[float64_t] output
bint is_monotonic_increasing_bounds

is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
start, end
Expand Down Expand Up @@ -933,8 +934,8 @@ cdef _roll_min_max(ndarray[numeric] values,
bint is_max):
cdef:
numeric ai
int64_t i, k, curr_win_size, start
Py_ssize_t nobs = 0, N = len(values)
int64_t curr_win_size, start
Py_ssize_t i, k, nobs = 0, N = len(values)
deque Q[int64_t] # min/max always the front
deque W[int64_t] # track the whole window for nobs compute
ndarray[float64_t, ndim=1] output
Expand Down Expand Up @@ -1017,14 +1018,14 @@ def roll_quantile(const float64_t[:] values, ndarray[int64_t] start,
O(N log(window)) implementation using skip list
"""
cdef:
Py_ssize_t i, j, s, e, N = len(values), idx
int ret = 0
int64_t nobs = 0, win
float64_t val, prev, midpoint, idx_with_fraction
skiplist_t *skiplist
int64_t nobs = 0, i, j, s, e, N = len(values), win
Py_ssize_t idx
ndarray[float64_t] output
float64_t vlow, vhigh
skiplist_t *skiplist
InterpolationType interpolation_type
int ret = 0
ndarray[float64_t] output

if quantile <= 0.0 or quantile >= 1.0:
raise ValueError(f"quantile value {quantile} not in [0, 1]")
Expand All @@ -1041,10 +1042,10 @@ def roll_quantile(const float64_t[:] values, ndarray[int64_t] start,
# actual skiplist ops outweigh any window computation costs
output = np.empty(N, dtype=float)

if (end - start).max() == 0:
win = (end - start).max()
if win == 0:
output[:] = NaN
return output
win = (end - start).max()
skiplist = skiplist_init(<int>win)
if skiplist == NULL:
raise MemoryError("skiplist_init failed")
Expand Down Expand Up @@ -1473,9 +1474,9 @@ def roll_weighted_var(const float64_t[:] values, const float64_t[:] weights,
# ----------------------------------------------------------------------
# Exponentially weighted moving average

def ewma(float64_t[:] vals, int64_t[:] start, int64_t[:] end, int minp,
float64_t com, bint adjust, bint ignore_na, float64_t[:] times,
float64_t halflife):
def ewma(const float64_t[:] vals, const int64_t[:] start, const int64_t[:] end,
int minp, float64_t com, bint adjust, bint ignore_na,
const float64_t[:] times, float64_t halflife):
"""
Compute exponentially-weighted moving average using center-of-mass.

Expand All @@ -1486,8 +1487,10 @@ def ewma(float64_t[:] vals, int64_t[:] start, int64_t[:] end, int minp,
end: ndarray (int64 type)
minp : int
com : float64
adjust : int
adjust : bool
ignore_na : bool
times : ndarray (float64 type)
halflife : float64

Returns
-------
Expand All @@ -1496,7 +1499,7 @@ def ewma(float64_t[:] vals, int64_t[:] start, int64_t[:] end, int minp,

cdef:
Py_ssize_t i, j, s, e, nobs, win_size, N = len(vals), M = len(start)
float64_t[:] sub_vals
const float64_t[:] sub_vals
ndarray[float64_t] sub_output, output = np.empty(N, dtype=float)
float64_t alpha, old_wt_factor, new_wt, weighted_avg, old_wt, cur, delta
bint is_observation
Expand Down Expand Up @@ -1555,8 +1558,9 @@ def ewma(float64_t[:] vals, int64_t[:] start, int64_t[:] end, int minp,
# Exponentially weighted moving covariance


def ewmcov(float64_t[:] input_x, int64_t[:] start, int64_t[:] end, int minp,
float64_t[:] input_y, float64_t com, bint adjust, bint ignore_na, bint bias):
def ewmcov(const float64_t[:] input_x, const int64_t[:] start, const int64_t[:] end,
int minp, const float64_t[:] input_y, float64_t com, bint adjust,
bint ignore_na, bint bias):
"""
Compute exponentially-weighted moving variance using center-of-mass.

Expand All @@ -1568,9 +1572,9 @@ def ewmcov(float64_t[:] input_x, int64_t[:] start, int64_t[:] end, int minp,
minp : int
input_y : ndarray (float64 type)
com : float64
adjust : int
adjust : bool
ignore_na : bool
bias : int
bias : bool

Returns
-------
Expand All @@ -1583,7 +1587,7 @@ def ewmcov(float64_t[:] input_x, int64_t[:] start, int64_t[:] end, int minp,
float64_t alpha, old_wt_factor, new_wt, mean_x, mean_y, cov
float64_t sum_wt, sum_wt2, old_wt, cur_x, cur_y, old_mean_x, old_mean_y
float64_t numerator, denominator
float64_t[:] sub_x_vals, sub_y_vals
const float64_t[:] sub_x_vals, sub_y_vals
ndarray[float64_t] sub_out, output = np.empty(N, dtype=float)
bint is_observation

Expand All @@ -1594,6 +1598,8 @@ def ewmcov(float64_t[:] input_x, int64_t[:] start, int64_t[:] end, int minp,
return output

alpha = 1. / (1. + com)
old_wt_factor = 1. - alpha
new_wt = 1. if adjust else alpha

for j in range(L):
s = start[j]
Expand All @@ -1603,9 +1609,6 @@ def ewmcov(float64_t[:] input_x, int64_t[:] start, int64_t[:] end, int minp,
win_size = len(sub_x_vals)
sub_out = np.empty(win_size, dtype=float)

old_wt_factor = 1. - alpha
new_wt = 1. if adjust else alpha

mean_x = sub_x_vals[0]
mean_y = sub_y_vals[0]
is_observation = (mean_x == mean_x) and (mean_y == mean_y)
Expand Down