Skip to content

TYP: libalgos.pyi #40760

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 8, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
293 changes: 293 additions & 0 deletions pandas/_libs/algos.pyi
Original file line number Diff line number Diff line change
@@ -0,0 +1,293 @@
# Note: this covers algos.pyx and algos_common_helper but NOT algos_take_helper
from typing import Any

import numpy as np

class Infinity:
"""
Provide a positive Infinity comparison method for ranking.
"""
def __eq__(self, other) -> bool: ...
def __ne__(self, other) -> bool: ...
def __lt__(self, other) -> bool: ...
def __le__(self, other) -> bool: ...
def __gt__(self, other) -> bool: ...
def __ge__(self, other) -> bool: ...


class NegInfinity:
"""
Provide a negative Infinity comparison method for ranking.
"""
def __eq__(self, other) -> bool: ...
def __ne__(self, other) -> bool: ...
def __lt__(self, other) -> bool: ...
def __le__(self, other) -> bool: ...
def __gt__(self, other) -> bool: ...
def __ge__(self, other) -> bool: ...


def unique_deltas(
arr: np.ndarray, # const int64_t[:]
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]


def is_lexsorted(list_of_arrays: list[np.ndarray]) -> bool: ...


def groupsort_indexer(
index: np.ndarray, # const int64_t[:]
ngroups: int,
) -> tuple[
np.ndarray, # ndarray[int64_t, ndim=1]
np.ndarray, # ndarray[int64_t, ndim=1]
]:
...


def kth_smallest(
a: np.ndarray, # numeric[:]
k: int,
) -> Any: ... # numeric


# ----------------------------------------------------------------------
# Pairwise correlation/covariance



def nancorr(
mat: np.ndarray, # const float64_t[:, :]
cov: bool = False,
minp=None,
) -> np.ndarray: # np.ndarray[float64_t, ndim=2]
...


def nancorr_spearman(
mat: np.ndarray, # ndarray[float64_t, ndim=2]
minp: int = 1,
) -> np.ndarray: # np.ndarray[np.float64, ndim=2]
...


def nancorr_kendall(
mat: np.ndarray, # ndarray[float64_t, ndim=2]
minp: int = 1,
) -> np.ndarray: # np.ndarray[float64, ndim=2]
...

# ----------------------------------------------------------------------

# ctypedef fused algos_t:
# float64_t
# float32_t
# object
# int64_t
# int32_t
# int16_t
# int8_t
# uint64_t
# uint32_t
# uint16_t
# uint8_t


def validate_limit(nobs: int | None, limit=None) -> int: ...


def pad(
old: np.ndarray, # ndarray[algos_t]
new: np.ndarray, # ndarray[algos_t]
limit=None,
) -> np.ndarray: ... # np.ndarray[np.intp, ndim=1]


def pad_inplace(
values: np.ndarray, # algos_t[:]
mask: np.ndarray, # uint8_t[:]
limit=None,
) -> None: ...


def pad_2d_inplace(
values: np.ndarray, # algos_t[:, :]
mask: np.ndarray, # const uint8_t[:, :]
limit=None,
) -> None:
...


def backfill(
old: np.ndarray, # ndarray[algos_t]
new: np.ndarray, # ndarray[algos_t]
limit=None,
) -> np.ndarray: # np.ndarray[np.intp, ndim=1]
...

def backfill_inplace(
values: np.ndarray, # algos_t[:]
mask: np.ndarray, # uint8_t[:]
limit=None,
) -> None: ...


def backfill_2d_inplace(
values: np.ndarray, # algos_t[:, :]
mask: np.ndarray, # const uint8_t[:, :]
limit=None,
) -> None: ...


def is_monotonic(
arr: np.ndarray, # ndarray[algos_t, ndim=1]
timelike: bool
) -> tuple[bool, bool, bool]:
...

# ----------------------------------------------------------------------
# rank_1d, rank_2d
# ----------------------------------------------------------------------

# ctypedef fused rank_t:
# object
# float64_t
# uint64_t
# int64_t


def rank_1d(
values: np.ndarray, # ndarray[rank_t, ndim=1]
labels: np.ndarray, # const int64_t[:]
is_datetimelike: bool = ...,
ties_method=...,
ascending: bool = ...,
pct: bool = ...,
na_option=...,
) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]


def rank_2d(
in_arr: np.ndarray, # ndarray[rank_t, ndim=2]
axis: int = ...,
is_datetimelike: bool = ...,
ties_method=...,
ascending: bool = ...,
na_option=...,
pct: bool = ...,
) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]


def diff_2d(
arr: np.ndarray, # ndarray[diff_t, ndim=2]
out: np.ndarray, # ndarray[out_t, ndim=2]
periods: int,
axis: int,
datetimelike: bool = ...,
) -> None: ...


def ensure_platform_int(arr: object) -> np.ndarray: ...

def ensure_object(arr: object) -> np.ndarray: ...

def ensure_float64(arr: object, copy=True) -> np.ndarray: ...

def ensure_float32(arr: object, copy=True) -> np.ndarray: ...

def ensure_int8(arr: object, copy=True) -> np.ndarray: ...

def ensure_int16(arr: object, copy=True) -> np.ndarray: ...

def ensure_int32(arr: object, copy=True) -> np.ndarray: ...

def ensure_int64(arr: object, copy=True) -> np.ndarray: ...

def ensure_uint8(arr: object, copy=True) -> np.ndarray: ...

def ensure_uint16(arr: object, copy=True) -> np.ndarray: ...

def ensure_uint32(arr: object, copy=True) -> np.ndarray: ...

def ensure_uint64(arr: object, copy=True) -> np.ndarray: ...


def take_1d_int8_int8(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int8_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int8_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int8_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int16_int16(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int16_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int16_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int16_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int32_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int32_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int64_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_int64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_float32_float32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_float32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_float64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_object_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_bool_bool(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_1d_bool_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...

def take_2d_axis0_int8_int8(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int8_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int8_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int8_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int16_int16(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int16_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int16_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int16_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int32_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int32_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int64_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_int64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_float32_float32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_float32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_float64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_object_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_bool_bool(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis0_bool_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...

def take_2d_axis1_int8_int8(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int8_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int8_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int8_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int16_int16(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int16_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int16_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int16_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int32_int32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int32_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int64_int64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_int64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_float32_float32(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_float32_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_float64_float64(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_object_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_bool_bool(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_axis1_bool_object(values: np.ndarray, indexer: np.ndarray, out: np.ndarray, fill_value=...) -> None: ...

def take_2d_multi_int8_int8(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int8_int32(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int8_int64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int8_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int16_int16(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int16_int32(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int16_int64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int16_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int32_int32(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int32_int64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int32_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int64_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_float32_float32(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_float32_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_float64_float64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_object_object(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_bool_bool(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_bool_object(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
def take_2d_multi_int64_int64(values: np.ndarray, indexer, out: np.ndarray, fill_value=...) -> None: ...
2 changes: 1 addition & 1 deletion pandas/_libs/algos.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -563,7 +563,7 @@ ctypedef fused algos_t:
uint8_t


def validate_limit(nobs: int, limit=None) -> int:
def validate_limit(nobs: int | None, limit=None) -> int:
"""
Check that the `limit` argument is a positive integer.

Expand Down
17 changes: 4 additions & 13 deletions pandas/core/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,10 +155,7 @@ def _ensure_data(values: ArrayLike) -> tuple[np.ndarray, DtypeObj]:
with catch_warnings():
simplefilter("ignore", np.ComplexWarning)
values = ensure_float64(values)
# error: Incompatible return value type (got "Tuple[ExtensionArray,
# dtype[floating[_64Bit]]]", expected "Tuple[ndarray, Union[dtype[Any],
# ExtensionDtype]]")
return values, np.dtype("float64") # type: ignore[return-value]
return values, np.dtype("float64")

except (TypeError, ValueError, OverflowError):
# if we are trying to coerce to a dtype
Expand Down Expand Up @@ -202,11 +199,7 @@ def _ensure_data(values: ArrayLike) -> tuple[np.ndarray, DtypeObj]:
# we are actually coercing to int64
# until our algos support int* directly (not all do)
values = ensure_int64(values)

# error: Incompatible return value type (got "Tuple[ExtensionArray,
# Union[dtype[Any], ExtensionDtype]]", expected "Tuple[ndarray,
# Union[dtype[Any], ExtensionDtype]]")
return values, dtype # type: ignore[return-value]
return values, dtype

# we have failed, return object
values = np.asarray(values, dtype=object)
Expand Down Expand Up @@ -300,7 +293,7 @@ def _get_hashtable_algo(values: np.ndarray):
return htable, values


def _get_values_for_rank(values: ArrayLike):
def _get_values_for_rank(values: ArrayLike) -> np.ndarray:
if is_categorical_dtype(values):
values = cast("Categorical", values)._values_for_rank()

Expand All @@ -311,9 +304,7 @@ def _get_values_for_rank(values: ArrayLike):
def get_data_algo(values: ArrayLike):
values = _get_values_for_rank(values)

# error: Argument 1 to "_check_object_for_strings" has incompatible type
# "ExtensionArray"; expected "ndarray"
ndtype = _check_object_for_strings(values) # type: ignore[arg-type]
ndtype = _check_object_for_strings(values)
htable = _hashtables.get(ndtype, _hashtables["object"])

return htable, values
Expand Down
8 changes: 5 additions & 3 deletions pandas/core/array_algos/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,6 @@

import numpy as np

from pandas.core.dtypes.common import ensure_platform_int


def shift(values: np.ndarray, periods: int, axis: int, fill_value) -> np.ndarray:
new_values = values
Expand All @@ -20,7 +18,11 @@ def shift(values: np.ndarray, periods: int, axis: int, fill_value) -> np.ndarray
axis = new_values.ndim - axis - 1

if new_values.size:
new_values = np.roll(new_values, ensure_platform_int(periods), axis=axis)
new_values = np.roll(
new_values,
np.intp(periods),
axis=axis,
)

axis_indexer = [slice(None)] * values.ndim
if periods > 0:
Expand Down
8 changes: 6 additions & 2 deletions pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -2576,10 +2576,14 @@ def _get_codes_for_values(values, categories: Index) -> np.ndarray:
if not isinstance(values, cls):
# exception raised in _from_sequence
values = ensure_object(values)
categories = ensure_object(categories)
# error: Incompatible types in assignment (expression has type
# "ndarray", variable has type "Index")
categories = ensure_object(categories) # type: ignore[assignment]
elif not dtype_equal:
values = ensure_object(values)
categories = ensure_object(categories)
# error: Incompatible types in assignment (expression has type "ndarray",
# variable has type "Index")
categories = ensure_object(categories) # type: ignore[assignment]

if isinstance(categories, ABCIndex):
return coerce_indexer_dtype(categories.get_indexer_for(values), categories)
Expand Down
4 changes: 1 addition & 3 deletions pandas/core/dtypes/cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -1226,9 +1226,7 @@ def astype_nansafe(
from pandas import to_datetime

return astype_nansafe(
# error: No overload variant of "to_datetime" matches argument type
# "ndarray"
to_datetime(arr).values, # type: ignore[call-overload]
to_datetime(arr).values,
dtype,
copy=copy,
)
Expand Down
Loading