-
-
Notifications
You must be signed in to change notification settings - Fork 18.6k
REF: Add tests.groupby.methods #55312
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
12 commits
Select commit
Hold shift + click to select a range
0c8ab05
REF: Add tests.groupby.methods
rhshadrach 5384d8f
Merge branch 'main' of https://github.com/pandas-dev/pandas into clea…
rhshadrach 10aaffb
Merge cleanup
rhshadrach 8448dd9
Refactor
rhshadrach e118109
Refactor
rhshadrach 9c24ba6
Merge branch 'main' of https://github.com/pandas-dev/pandas into clea…
rhshadrach dcb0626
Show value of ymin
rhshadrach 78ded9b
Merge branch 'main' of https://github.com/pandas-dev/pandas into clea…
rhshadrach 45455d6
fixup
rhshadrach 4fe7688
Merge branch 'main' of https://github.com/pandas-dev/pandas into clea…
rhshadrach 63002c0
Revert
rhshadrach 1b741eb
Revert
rhshadrach File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
Empty file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
import numpy as np | ||
|
||
from pandas import ( | ||
DataFrame, | ||
Index, | ||
Series, | ||
) | ||
import pandas._testing as tm | ||
|
||
|
||
def test_corrwith_with_1_axis(): | ||
# GH 47723 | ||
df = DataFrame({"a": [1, 1, 2], "b": [3, 7, 4]}) | ||
gb = df.groupby("a") | ||
|
||
msg = "DataFrameGroupBy.corrwith with axis=1 is deprecated" | ||
with tm.assert_produces_warning(FutureWarning, match=msg): | ||
result = gb.corrwith(df, axis=1) | ||
index = Index( | ||
data=[(1, 0), (1, 1), (1, 2), (2, 2), (2, 0), (2, 1)], | ||
name=("a", None), | ||
) | ||
expected = Series([np.nan] * 6, index=index) | ||
tm.assert_series_equal(result, expected) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
import numpy as np | ||
import pytest | ||
|
||
import pandas as pd | ||
from pandas import ( | ||
DataFrame, | ||
Index, | ||
MultiIndex, | ||
Timestamp, | ||
) | ||
import pandas._testing as tm | ||
|
||
|
||
def test_apply_describe_bug(mframe): | ||
grouped = mframe.groupby(level="first") | ||
grouped.describe() # it works! | ||
|
||
|
||
def test_series_describe_multikey(): | ||
ts = tm.makeTimeSeries() | ||
grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) | ||
result = grouped.describe() | ||
tm.assert_series_equal(result["mean"], grouped.mean(), check_names=False) | ||
tm.assert_series_equal(result["std"], grouped.std(), check_names=False) | ||
tm.assert_series_equal(result["min"], grouped.min(), check_names=False) | ||
|
||
|
||
def test_series_describe_single(): | ||
ts = tm.makeTimeSeries() | ||
grouped = ts.groupby(lambda x: x.month) | ||
result = grouped.apply(lambda x: x.describe()) | ||
expected = grouped.describe().stack(future_stack=True) | ||
tm.assert_series_equal(result, expected) | ||
|
||
|
||
@pytest.mark.parametrize("keys", ["key1", ["key1", "key2"]]) | ||
def test_series_describe_as_index(as_index, keys): | ||
# GH#49256 | ||
df = DataFrame( | ||
{ | ||
"key1": ["one", "two", "two", "three", "two"], | ||
"key2": ["one", "two", "two", "three", "two"], | ||
"foo2": [1, 2, 4, 4, 6], | ||
} | ||
) | ||
gb = df.groupby(keys, as_index=as_index)["foo2"] | ||
result = gb.describe() | ||
expected = DataFrame( | ||
{ | ||
"key1": ["one", "three", "two"], | ||
"count": [1.0, 1.0, 3.0], | ||
"mean": [1.0, 4.0, 4.0], | ||
"std": [np.nan, np.nan, 2.0], | ||
"min": [1.0, 4.0, 2.0], | ||
"25%": [1.0, 4.0, 3.0], | ||
"50%": [1.0, 4.0, 4.0], | ||
"75%": [1.0, 4.0, 5.0], | ||
"max": [1.0, 4.0, 6.0], | ||
} | ||
) | ||
if len(keys) == 2: | ||
expected.insert(1, "key2", expected["key1"]) | ||
if as_index: | ||
expected = expected.set_index(keys) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
|
||
def test_frame_describe_multikey(tsframe): | ||
grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month]) | ||
result = grouped.describe() | ||
desc_groups = [] | ||
for col in tsframe: | ||
group = grouped[col].describe() | ||
# GH 17464 - Remove duplicate MultiIndex levels | ||
group_col = MultiIndex( | ||
levels=[[col], group.columns], | ||
codes=[[0] * len(group.columns), range(len(group.columns))], | ||
) | ||
group = DataFrame(group.values, columns=group_col, index=group.index) | ||
desc_groups.append(group) | ||
expected = pd.concat(desc_groups, axis=1) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
msg = "DataFrame.groupby with axis=1 is deprecated" | ||
with tm.assert_produces_warning(FutureWarning, match=msg): | ||
groupedT = tsframe.groupby({"A": 0, "B": 0, "C": 1, "D": 1}, axis=1) | ||
result = groupedT.describe() | ||
expected = tsframe.describe().T | ||
# reverting the change from https://github.com/pandas-dev/pandas/pull/35441/ | ||
expected.index = MultiIndex( | ||
levels=[[0, 1], expected.index], | ||
codes=[[0, 0, 1, 1], range(len(expected.index))], | ||
) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
|
||
def test_frame_describe_tupleindex(): | ||
# GH 14848 - regression from 0.19.0 to 0.19.1 | ||
df1 = DataFrame( | ||
{ | ||
"x": [1, 2, 3, 4, 5] * 3, | ||
"y": [10, 20, 30, 40, 50] * 3, | ||
"z": [100, 200, 300, 400, 500] * 3, | ||
} | ||
) | ||
df1["k"] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5 | ||
df2 = df1.rename(columns={"k": "key"}) | ||
msg = "Names should be list-like for a MultiIndex" | ||
with pytest.raises(ValueError, match=msg): | ||
df1.groupby("k").describe() | ||
with pytest.raises(ValueError, match=msg): | ||
df2.groupby("key").describe() | ||
|
||
|
||
def test_frame_describe_unstacked_format(): | ||
# GH 4792 | ||
prices = { | ||
Timestamp("2011-01-06 10:59:05", tz=None): 24990, | ||
Timestamp("2011-01-06 12:43:33", tz=None): 25499, | ||
Timestamp("2011-01-06 12:54:09", tz=None): 25499, | ||
} | ||
volumes = { | ||
Timestamp("2011-01-06 10:59:05", tz=None): 1500000000, | ||
Timestamp("2011-01-06 12:43:33", tz=None): 5000000000, | ||
Timestamp("2011-01-06 12:54:09", tz=None): 100000000, | ||
} | ||
df = DataFrame({"PRICE": prices, "VOLUME": volumes}) | ||
result = df.groupby("PRICE").VOLUME.describe() | ||
data = [ | ||
df[df.PRICE == 24990].VOLUME.describe().values.tolist(), | ||
df[df.PRICE == 25499].VOLUME.describe().values.tolist(), | ||
] | ||
expected = DataFrame( | ||
data, | ||
index=Index([24990, 25499], name="PRICE"), | ||
columns=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], | ||
) | ||
tm.assert_frame_equal(result, expected) | ||
|
||
|
||
@pytest.mark.filterwarnings( | ||
"ignore:" | ||
"indexing past lexsort depth may impact performance:" | ||
"pandas.errors.PerformanceWarning" | ||
) | ||
@pytest.mark.parametrize("as_index", [True, False]) | ||
@pytest.mark.parametrize("keys", [["a1"], ["a1", "a2"]]) | ||
def test_describe_with_duplicate_output_column_names(as_index, keys): | ||
# GH 35314 | ||
df = DataFrame( | ||
{ | ||
"a1": [99, 99, 99, 88, 88, 88], | ||
"a2": [99, 99, 99, 88, 88, 88], | ||
"b": [1, 2, 3, 4, 5, 6], | ||
"c": [10, 20, 30, 40, 50, 60], | ||
}, | ||
columns=["a1", "a2", "b", "b"], | ||
copy=False, | ||
) | ||
if keys == ["a1"]: | ||
df = df.drop(columns="a2") | ||
|
||
expected = ( | ||
DataFrame.from_records( | ||
[ | ||
("b", "count", 3.0, 3.0), | ||
("b", "mean", 5.0, 2.0), | ||
("b", "std", 1.0, 1.0), | ||
("b", "min", 4.0, 1.0), | ||
("b", "25%", 4.5, 1.5), | ||
("b", "50%", 5.0, 2.0), | ||
("b", "75%", 5.5, 2.5), | ||
("b", "max", 6.0, 3.0), | ||
("b", "count", 3.0, 3.0), | ||
("b", "mean", 5.0, 2.0), | ||
("b", "std", 1.0, 1.0), | ||
("b", "min", 4.0, 1.0), | ||
("b", "25%", 4.5, 1.5), | ||
("b", "50%", 5.0, 2.0), | ||
("b", "75%", 5.5, 2.5), | ||
("b", "max", 6.0, 3.0), | ||
], | ||
) | ||
.set_index([0, 1]) | ||
.T | ||
) | ||
expected.columns.names = [None, None] | ||
if len(keys) == 2: | ||
expected.index = MultiIndex( | ||
levels=[[88, 99], [88, 99]], codes=[[0, 1], [0, 1]], names=["a1", "a2"] | ||
) | ||
else: | ||
expected.index = Index([88, 99], name="a1") | ||
|
||
if not as_index: | ||
expected = expected.reset_index() | ||
|
||
result = df.groupby(keys, as_index=as_index).describe() | ||
|
||
tm.assert_frame_equal(result, expected) | ||
|
||
|
||
def test_describe_duplicate_columns(): | ||
# GH#50806 | ||
df = DataFrame([[0, 1, 2, 3]]) | ||
df.columns = [0, 1, 2, 0] | ||
gb = df.groupby(df[1]) | ||
result = gb.describe(percentiles=[]) | ||
|
||
columns = ["count", "mean", "std", "min", "50%", "max"] | ||
frames = [ | ||
DataFrame([[1.0, val, np.nan, val, val, val]], index=[1], columns=columns) | ||
for val in (0.0, 2.0, 3.0) | ||
] | ||
expected = pd.concat(frames, axis=1) | ||
expected.columns = MultiIndex( | ||
levels=[[0, 2], columns], | ||
codes=[6 * [0] + 6 * [1] + 6 * [0], 3 * list(range(6))], | ||
) | ||
expected.index.names = [1] | ||
tm.assert_frame_equal(result, expected) |
File renamed without changes.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import numpy as np | ||
import pytest | ||
|
||
from pandas import ( | ||
DataFrame, | ||
Index, | ||
Series, | ||
) | ||
import pandas._testing as tm | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"in_vals, out_vals", | ||
[ | ||
# Basics: strictly increasing (T), strictly decreasing (F), | ||
# abs val increasing (F), non-strictly increasing (T) | ||
([1, 2, 5, 3, 2, 0, 4, 5, -6, 1, 1], [True, False, False, True]), | ||
# Test with inf vals | ||
( | ||
[1, 2.1, np.inf, 3, 2, np.inf, -np.inf, 5, 11, 1, -np.inf], | ||
[True, False, True, False], | ||
), | ||
# Test with nan vals; should always be False | ||
( | ||
[1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], | ||
[False, False, False, False], | ||
), | ||
], | ||
) | ||
def test_is_monotonic_increasing(in_vals, out_vals): | ||
# GH 17015 | ||
source_dict = { | ||
"A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"], | ||
"B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"], | ||
"C": in_vals, | ||
} | ||
df = DataFrame(source_dict) | ||
result = df.groupby("B").C.is_monotonic_increasing | ||
index = Index(list("abcd"), name="B") | ||
expected = Series(index=index, data=out_vals, name="C") | ||
tm.assert_series_equal(result, expected) | ||
|
||
# Also check result equal to manually taking x.is_monotonic_increasing. | ||
expected = df.groupby(["B"]).C.apply(lambda x: x.is_monotonic_increasing) | ||
tm.assert_series_equal(result, expected) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"in_vals, out_vals", | ||
[ | ||
# Basics: strictly decreasing (T), strictly increasing (F), | ||
# abs val decreasing (F), non-strictly increasing (T) | ||
([10, 9, 7, 3, 4, 5, -3, 2, 0, 1, 1], [True, False, False, True]), | ||
# Test with inf vals | ||
( | ||
[np.inf, 1, -np.inf, np.inf, 2, -3, -np.inf, 5, -3, -np.inf, -np.inf], | ||
[True, True, False, True], | ||
), | ||
# Test with nan vals; should always be False | ||
( | ||
[1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], | ||
[False, False, False, False], | ||
), | ||
], | ||
) | ||
def test_is_monotonic_decreasing(in_vals, out_vals): | ||
# GH 17015 | ||
source_dict = { | ||
"A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"], | ||
"B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"], | ||
"C": in_vals, | ||
} | ||
|
||
df = DataFrame(source_dict) | ||
result = df.groupby("B").C.is_monotonic_decreasing | ||
index = Index(list("abcd"), name="B") | ||
expected = Series(index=index, data=out_vals, name="C") | ||
tm.assert_series_equal(result, expected) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.