Skip to content

Small improvement to lengthscale handling #2350

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 26, 2017
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 8 additions & 11 deletions pymc3/gp/cov.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ class Combination(Covariance):
def __init__(self, factor_list):
input_dim = np.max([factor.input_dim for factor in
filter(lambda x: isinstance(x, Covariance), factor_list)])
Covariance.__init__(self, input_dim=input_dim)
super(Combination, self).__init__(input_dim=input_dim)
self.factor_list = []
for factor in factor_list:
if isinstance(factor, self.__class__):
Expand Down Expand Up @@ -117,10 +117,8 @@ class Stationary(Covariance):
"""

def __init__(self, input_dim, lengthscales, active_dims=None):
Covariance.__init__(self, input_dim, active_dims)
if isinstance(lengthscales, (list, tuple)):
lengthscales = np.array(lengthscales)
self.lengthscales = lengthscales
super(Stationary, self).__init__(input_dim, active_dims)
self.lengthscales = tt.as_tensor_variable(lengthscales)

def square_dist(self, X, Z):
X = tt.mul(X, 1.0 / self.lengthscales)
Expand Down Expand Up @@ -165,8 +163,7 @@ class RatQuad(Stationary):
"""

def __init__(self, input_dim, lengthscales, alpha, active_dims=None):
Covariance.__init__(self, input_dim, active_dims)
self.lengthscales = lengthscales
super(RatQuad, self).__init__(input_dim, lengthscales, active_dims)
self.alpha = alpha

def __call__(self, X, Z=None):
Expand Down Expand Up @@ -240,7 +237,7 @@ class Linear(Covariance):
"""

def __init__(self, input_dim, c, active_dims=None):
Covariance.__init__(self, input_dim, active_dims)
super(Linear, self).__init__(input_dim, active_dims)
self.c = c

def __call__(self, X, Z=None):
Expand All @@ -262,7 +259,7 @@ class Polynomial(Linear):
"""

def __init__(self, input_dim, c, d, offset, active_dims=None):
Linear.__init__(self, input_dim, c, active_dims)
super(Polynomial, self).__init__(input_dim, c, active_dims)
self.d = d
self.offset = offset

Expand All @@ -289,7 +286,7 @@ class WarpedInput(Covariance):
"""

def __init__(self, input_dim, cov_func, warp_func, args=None, active_dims=None):
Covariance.__init__(self, input_dim, active_dims)
super(WarpedInput, self).__init__(input_dim, active_dims)
if not callable(warp_func):
raise TypeError("warp_func must be callable")
if not isinstance(cov_func, Covariance):
Expand Down Expand Up @@ -323,7 +320,7 @@ class Gibbs(Covariance):
Additional inputs (besides X or Z) to lengthscale_func.
"""
def __init__(self, input_dim, lengthscale_func, args=None, active_dims=None):
Covariance.__init__(self, input_dim, active_dims)
super(Gibbs, self).__init__(input_dim, active_dims)
if active_dims is not None:
if input_dim != 1 or sum(active_dims) == 1:
raise NotImplementedError("Higher dimensional inputs are untested")
Expand Down