Skip to content

Move test_math tests #18098

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 21, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
296 changes: 148 additions & 148 deletions Lib/test/test_math.py
Original file line number Diff line number Diff line change
Expand Up @@ -1746,19 +1746,139 @@ def _naive_prod(iterable, start=1):
self.assertEqual(type(prod([1, decimal.Decimal(2.0), 3, 4, 5, 6])),
decimal.Decimal)

# Custom assertions.
def testPerm(self):
perm = math.perm
factorial = math.factorial
# Test if factorial definition is satisfied
for n in range(100):
for k in range(n + 1):
self.assertEqual(perm(n, k),
factorial(n) // factorial(n - k))

def assertIsNaN(self, value):
if not math.isnan(value):
self.fail("Expected a NaN, got {!r}.".format(value))
# Test for Pascal's identity
for n in range(1, 100):
for k in range(1, n):
self.assertEqual(perm(n, k), perm(n - 1, k - 1) * k + perm(n - 1, k))

def assertEqualSign(self, x, y):
"""Similar to assertEqual(), but compare also the sign.
# Test corner cases
for n in range(1, 100):
self.assertEqual(perm(n, 0), 1)
self.assertEqual(perm(n, 1), n)
self.assertEqual(perm(n, n), factorial(n))

Function useful to compare signed zeros.
"""
self.assertEqual(x, y)
self.assertEqual(math.copysign(1.0, x), math.copysign(1.0, y))
# Test one argument form
for n in range(20):
self.assertEqual(perm(n), factorial(n))
self.assertEqual(perm(n, None), factorial(n))

# Raises TypeError if any argument is non-integer or argument count is
# not 1 or 2
self.assertRaises(TypeError, perm, 10, 1.0)
self.assertRaises(TypeError, perm, 10, decimal.Decimal(1.0))
self.assertRaises(TypeError, perm, 10, "1")
self.assertRaises(TypeError, perm, 10.0, 1)
self.assertRaises(TypeError, perm, decimal.Decimal(10.0), 1)
self.assertRaises(TypeError, perm, "10", 1)

self.assertRaises(TypeError, perm)
self.assertRaises(TypeError, perm, 10, 1, 3)
self.assertRaises(TypeError, perm)

# Raises Value error if not k or n are negative numbers
self.assertRaises(ValueError, perm, -1, 1)
self.assertRaises(ValueError, perm, -2**1000, 1)
self.assertRaises(ValueError, perm, 1, -1)
self.assertRaises(ValueError, perm, 1, -2**1000)

# Returns zero if k is greater than n
self.assertEqual(perm(1, 2), 0)
self.assertEqual(perm(1, 2**1000), 0)

n = 2**1000
self.assertEqual(perm(n, 0), 1)
self.assertEqual(perm(n, 1), n)
self.assertEqual(perm(n, 2), n * (n-1))
if support.check_impl_detail(cpython=True):
self.assertRaises(OverflowError, perm, n, n)

for n, k in (True, True), (True, False), (False, False):
self.assertEqual(perm(n, k), 1)
self.assertIs(type(perm(n, k)), int)
self.assertEqual(perm(IntSubclass(5), IntSubclass(2)), 20)
self.assertEqual(perm(MyIndexable(5), MyIndexable(2)), 20)
for k in range(3):
self.assertIs(type(perm(IntSubclass(5), IntSubclass(k))), int)
self.assertIs(type(perm(MyIndexable(5), MyIndexable(k))), int)

def testComb(self):
comb = math.comb
factorial = math.factorial
# Test if factorial definition is satisfied
for n in range(100):
for k in range(n + 1):
self.assertEqual(comb(n, k), factorial(n)
// (factorial(k) * factorial(n - k)))

# Test for Pascal's identity
for n in range(1, 100):
for k in range(1, n):
self.assertEqual(comb(n, k), comb(n - 1, k - 1) + comb(n - 1, k))

# Test corner cases
for n in range(100):
self.assertEqual(comb(n, 0), 1)
self.assertEqual(comb(n, n), 1)

for n in range(1, 100):
self.assertEqual(comb(n, 1), n)
self.assertEqual(comb(n, n - 1), n)

# Test Symmetry
for n in range(100):
for k in range(n // 2):
self.assertEqual(comb(n, k), comb(n, n - k))

# Raises TypeError if any argument is non-integer or argument count is
# not 2
self.assertRaises(TypeError, comb, 10, 1.0)
self.assertRaises(TypeError, comb, 10, decimal.Decimal(1.0))
self.assertRaises(TypeError, comb, 10, "1")
self.assertRaises(TypeError, comb, 10.0, 1)
self.assertRaises(TypeError, comb, decimal.Decimal(10.0), 1)
self.assertRaises(TypeError, comb, "10", 1)

self.assertRaises(TypeError, comb, 10)
self.assertRaises(TypeError, comb, 10, 1, 3)
self.assertRaises(TypeError, comb)

# Raises Value error if not k or n are negative numbers
self.assertRaises(ValueError, comb, -1, 1)
self.assertRaises(ValueError, comb, -2**1000, 1)
self.assertRaises(ValueError, comb, 1, -1)
self.assertRaises(ValueError, comb, 1, -2**1000)

# Returns zero if k is greater than n
self.assertEqual(comb(1, 2), 0)
self.assertEqual(comb(1, 2**1000), 0)

n = 2**1000
self.assertEqual(comb(n, 0), 1)
self.assertEqual(comb(n, 1), n)
self.assertEqual(comb(n, 2), n * (n-1) // 2)
self.assertEqual(comb(n, n), 1)
self.assertEqual(comb(n, n-1), n)
self.assertEqual(comb(n, n-2), n * (n-1) // 2)
if support.check_impl_detail(cpython=True):
self.assertRaises(OverflowError, comb, n, n//2)

for n, k in (True, True), (True, False), (False, False):
self.assertEqual(comb(n, k), 1)
self.assertIs(type(comb(n, k)), int)
self.assertEqual(comb(IntSubclass(5), IntSubclass(2)), 10)
self.assertEqual(comb(MyIndexable(5), MyIndexable(2)), 10)
for k in range(3):
self.assertIs(type(comb(IntSubclass(5), IntSubclass(k))), int)
self.assertIs(type(comb(MyIndexable(5), MyIndexable(k))), int)

@requires_IEEE_754
def test_nextafter(self):
Expand Down Expand Up @@ -1802,9 +1922,9 @@ def test_nextafter(self):
self.assertEqual(math.nextafter(-largest_normal, -INF), -INF)

# NaN
self.assertTrue(math.isnan(math.nextafter(NAN, 1.0)))
self.assertTrue(math.isnan(math.nextafter(1.0, NAN)))
self.assertTrue(math.isnan(math.nextafter(NAN, NAN)))
self.assertIsNaN(math.nextafter(NAN, 1.0))
self.assertIsNaN(math.nextafter(1.0, NAN))
self.assertIsNaN(math.nextafter(NAN, NAN))

@requires_IEEE_754
def test_ulp(self):
Expand All @@ -1822,13 +1942,27 @@ def test_ulp(self):

# special cases
self.assertEqual(math.ulp(INF), INF)
self.assertTrue(math.isnan(math.ulp(math.nan)))
self.assertIsNaN(math.ulp(math.nan))

# negative number: ulp(-x) == ulp(x)
for x in (0.0, 1.0, 2 ** 52, 2 ** 64, INF):
with self.subTest(x=x):
self.assertEqual(math.ulp(-x), math.ulp(x))

# Custom assertions.

def assertIsNaN(self, value):
if not math.isnan(value):
self.fail("Expected a NaN, got {!r}.".format(value))

def assertEqualSign(self, x, y):
"""Similar to assertEqual(), but compare also the sign with copysign().

Function useful to compare signed zeros.
"""
self.assertEqual(x, y)
self.assertEqual(math.copysign(1.0, x), math.copysign(1.0, y))


class IsCloseTests(unittest.TestCase):
isclose = math.isclose # subclasses should override this
Expand Down Expand Up @@ -1952,140 +2086,6 @@ def test_fractions(self):
self.assertAllClose(fraction_examples, rel_tol=1e-8)
self.assertAllNotClose(fraction_examples, rel_tol=1e-9)

def testPerm(self):
perm = math.perm
factorial = math.factorial
# Test if factorial definition is satisfied
for n in range(100):
for k in range(n + 1):
self.assertEqual(perm(n, k),
factorial(n) // factorial(n - k))

# Test for Pascal's identity
for n in range(1, 100):
for k in range(1, n):
self.assertEqual(perm(n, k), perm(n - 1, k - 1) * k + perm(n - 1, k))

# Test corner cases
for n in range(1, 100):
self.assertEqual(perm(n, 0), 1)
self.assertEqual(perm(n, 1), n)
self.assertEqual(perm(n, n), factorial(n))

# Test one argument form
for n in range(20):
self.assertEqual(perm(n), factorial(n))
self.assertEqual(perm(n, None), factorial(n))

# Raises TypeError if any argument is non-integer or argument count is
# not 1 or 2
self.assertRaises(TypeError, perm, 10, 1.0)
self.assertRaises(TypeError, perm, 10, decimal.Decimal(1.0))
self.assertRaises(TypeError, perm, 10, "1")
self.assertRaises(TypeError, perm, 10.0, 1)
self.assertRaises(TypeError, perm, decimal.Decimal(10.0), 1)
self.assertRaises(TypeError, perm, "10", 1)

self.assertRaises(TypeError, perm)
self.assertRaises(TypeError, perm, 10, 1, 3)
self.assertRaises(TypeError, perm)

# Raises Value error if not k or n are negative numbers
self.assertRaises(ValueError, perm, -1, 1)
self.assertRaises(ValueError, perm, -2**1000, 1)
self.assertRaises(ValueError, perm, 1, -1)
self.assertRaises(ValueError, perm, 1, -2**1000)

# Returns zero if k is greater than n
self.assertEqual(perm(1, 2), 0)
self.assertEqual(perm(1, 2**1000), 0)

n = 2**1000
self.assertEqual(perm(n, 0), 1)
self.assertEqual(perm(n, 1), n)
self.assertEqual(perm(n, 2), n * (n-1))
if support.check_impl_detail(cpython=True):
self.assertRaises(OverflowError, perm, n, n)

for n, k in (True, True), (True, False), (False, False):
self.assertEqual(perm(n, k), 1)
self.assertIs(type(perm(n, k)), int)
self.assertEqual(perm(IntSubclass(5), IntSubclass(2)), 20)
self.assertEqual(perm(MyIndexable(5), MyIndexable(2)), 20)
for k in range(3):
self.assertIs(type(perm(IntSubclass(5), IntSubclass(k))), int)
self.assertIs(type(perm(MyIndexable(5), MyIndexable(k))), int)

def testComb(self):
comb = math.comb
factorial = math.factorial
# Test if factorial definition is satisfied
for n in range(100):
for k in range(n + 1):
self.assertEqual(comb(n, k), factorial(n)
// (factorial(k) * factorial(n - k)))

# Test for Pascal's identity
for n in range(1, 100):
for k in range(1, n):
self.assertEqual(comb(n, k), comb(n - 1, k - 1) + comb(n - 1, k))

# Test corner cases
for n in range(100):
self.assertEqual(comb(n, 0), 1)
self.assertEqual(comb(n, n), 1)

for n in range(1, 100):
self.assertEqual(comb(n, 1), n)
self.assertEqual(comb(n, n - 1), n)

# Test Symmetry
for n in range(100):
for k in range(n // 2):
self.assertEqual(comb(n, k), comb(n, n - k))

# Raises TypeError if any argument is non-integer or argument count is
# not 2
self.assertRaises(TypeError, comb, 10, 1.0)
self.assertRaises(TypeError, comb, 10, decimal.Decimal(1.0))
self.assertRaises(TypeError, comb, 10, "1")
self.assertRaises(TypeError, comb, 10.0, 1)
self.assertRaises(TypeError, comb, decimal.Decimal(10.0), 1)
self.assertRaises(TypeError, comb, "10", 1)

self.assertRaises(TypeError, comb, 10)
self.assertRaises(TypeError, comb, 10, 1, 3)
self.assertRaises(TypeError, comb)

# Raises Value error if not k or n are negative numbers
self.assertRaises(ValueError, comb, -1, 1)
self.assertRaises(ValueError, comb, -2**1000, 1)
self.assertRaises(ValueError, comb, 1, -1)
self.assertRaises(ValueError, comb, 1, -2**1000)

# Returns zero if k is greater than n
self.assertEqual(comb(1, 2), 0)
self.assertEqual(comb(1, 2**1000), 0)

n = 2**1000
self.assertEqual(comb(n, 0), 1)
self.assertEqual(comb(n, 1), n)
self.assertEqual(comb(n, 2), n * (n-1) // 2)
self.assertEqual(comb(n, n), 1)
self.assertEqual(comb(n, n-1), n)
self.assertEqual(comb(n, n-2), n * (n-1) // 2)
if support.check_impl_detail(cpython=True):
self.assertRaises(OverflowError, comb, n, n//2)

for n, k in (True, True), (True, False), (False, False):
self.assertEqual(comb(n, k), 1)
self.assertIs(type(comb(n, k)), int)
self.assertEqual(comb(IntSubclass(5), IntSubclass(2)), 10)
self.assertEqual(comb(MyIndexable(5), MyIndexable(2)), 10)
for k in range(3):
self.assertIs(type(comb(IntSubclass(5), IntSubclass(k))), int)
self.assertIs(type(comb(MyIndexable(5), MyIndexable(k))), int)


def test_main():
from doctest import DocFileSuite
Expand Down