Skip to content

bpo-46258: Streamline isqrt fast path #30333

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jan 15, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
Speed up :func:`math.isqrt` for small positive integers by replacing two
division steps with a lookup table.
57 changes: 43 additions & 14 deletions Modules/mathmodule.c
Original file line number Diff line number Diff line change
Expand Up @@ -1718,20 +1718,49 @@ completes the proof sketch.

*/

/*
The _approximate_isqrt_tab table provides approximate square roots for
16-bit integers. For any n in the range 2**14 <= n < 2**16, the value

a = _approximate_isqrt_tab[(n >> 8) - 64]

is an approximate square root of n, satisfying (a - 1)**2 < n < (a + 1)**2.

The table was computed in Python using the expression:

[min(round(sqrt(256*n + 128)), 255) for n in range(64, 256)]
*/

static const uint8_t _approximate_isqrt_tab[192] = {
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150,
151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160,
160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169,
170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178,
179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186,
187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194,
195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202,
203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210,
210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217,
217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224,
224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230,
231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237,
238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243,
244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250,
250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255,
};

/* Approximate square root of a large 64-bit integer.

Given `n` satisfying `2**62 <= n < 2**64`, return `a`
satisfying `(a - 1)**2 < n < (a + 1)**2`. */

static uint64_t
static inline uint32_t
_approximate_isqrt(uint64_t n)
{
uint32_t u = 1U + (n >> 62);
u = (u << 1) + (n >> 59) / u;
u = (u << 3) + (n >> 53) / u;
u = (u << 7) + (n >> 41) / u;
return (u << 15) + (n >> 17) / u;
uint32_t u = _approximate_isqrt_tab[(n >> 56) - 64];
u = (u << 7) + (uint32_t)(n >> 41) / u;
return (u << 15) + (uint32_t)((n >> 17) / u);
}

/*[clinic input]
Expand All @@ -1749,7 +1778,8 @@ math_isqrt(PyObject *module, PyObject *n)
{
int a_too_large, c_bit_length;
size_t c, d;
uint64_t m, u;
uint64_t m;
uint32_t u;
PyObject *a = NULL, *b;

n = _PyNumber_Index(n);
Expand All @@ -1776,18 +1806,17 @@ math_isqrt(PyObject *module, PyObject *n)
c = (c - 1U) / 2U;

/* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
fast, almost branch-free algorithm. In the final correction, we use `u*u
- 1 >= m` instead of the simpler `u*u > m` in order to get the correct
result in the corner case where `u=2**32`. */
fast, almost branch-free algorithm. */
if (c <= 31U) {
int shift = 31 - (int)c;
m = (uint64_t)PyLong_AsUnsignedLongLong(n);
Py_DECREF(n);
if (m == (uint64_t)(-1) && PyErr_Occurred()) {
return NULL;
}
u = _approximate_isqrt(m << (62U - 2U*c)) >> (31U - c);
u -= u * u - 1U >= m;
return PyLong_FromUnsignedLongLong((unsigned long long)u);
u = _approximate_isqrt(m << 2*shift) >> shift;
u -= (uint64_t)u * u > m;
return PyLong_FromUnsignedLong(u);
}

/* Slow path: n >= 2**64. We perform the first five iterations in C integer
Expand All @@ -1811,7 +1840,7 @@ math_isqrt(PyObject *module, PyObject *n)
goto error;
}
u = _approximate_isqrt(m) >> (31U - d);
a = PyLong_FromUnsignedLongLong((unsigned long long)u);
a = PyLong_FromUnsignedLong(u);
if (a == NULL) {
goto error;
}
Expand Down